
1

Five Balltree Construction
Algorithms

STEPHEN M. OMOHUNDRO

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, California 94704
Phone: 415-643-9153

Internet: om@icsi.berkeley.edu
November 20, 1989

Abstract. Balltrees are simple geometric data structures with a wide
range of practical applications to geometric learning tasks. In this report
we compare 5 different algorithms for constructing balltrees from data.
We study the trade-off between construction time and the quality of the
constructed tree. Two of the algorithms are on-line, two construct the
structures from the data set in a top down fashion, and one uses a bot-
tom up approach. We empirically study the algorithms on random data
drawn from eight different probability distributions representing
smooth, clustered, and curve distributed data in different ambient
space dimensions. We find that the bottom up approach usually produc-
es the best trees but has the longest construction time. The other ap-
proaches have uses in specific circumstances.

2 Introduction

Introduction

Many tasks in robotics, vision, speech, and graphics require the construction and manipu-
lation of geometric representations. Systems which build these representations by learning
from examples can be both flexible and robust. We have developed a data structure which
we call the balltree which is well suited to geometric learning tasks. Balltrees tune them-
selves to the structure of the represented data, support dynamic insertions and deletions,
have good average-case efficiency, deal well with high-dimensional entities, and are easy
to implement. In this report we compare five different algorithms for building these struc-
tures from data. We discuss the trade-off between the efficiency of the construction algo-
rithm and the efficiency of the resulting structure. Two of the algorithms are on-line, two
analyze the data in a top-down fashion, and one analyzes it in a bottom up manner.

The balltree structure is related to other hierarchical representations such as k-d trees
[Friedman, et. al., 1977] and oct-trees [Samet, 1984], but has specific advantages in the do-
mains of interest. We are applying these structures to representing, learning, and manipu-
lating point sets, smooth submanifolds, nonlinear mappings, and probability distributions.
Some of these applications are described in [Omohundro, 1987, 1988, 1989] in the context
of k-d trees. The operations that are efficiently supported include nearest neighbor retriev-
al, intersection and constraint queries, and probability maximization. The basic construc-
tion techniques described here should be applicable to a wide variety of other hierarchical
geometric data structures in which balls are replaced by boxes, cubes, ellipsoids, or sim-
plices.

Balltrees

We refer to the region bounded by a hyper-sphere in the n-dimensional Euclidean space
 as a ball. We represent balls by the n+1 floating point values which specify the coordi-

nates of its center and the length of its radius. A balltree is a complete binary tree in which
a ball is associated with each node in such a way that an interior node’s ball is the smallest
which contains the balls of its children. The leaves of the tree hold the information relevant
to the application; the interior nodes are used only to guide efficient search through the leaf
structures. Unlike the node regions in k-d trees or oct-trees, sibling regions in balltrees are
allowed to intersect and need not partition the entire space. These two features are critical

ℜn

Implementation 3

for the applications and give balltrees their representational power. Figure 1 shows an ex-
ample of a two-dimensional balltree.

In this report we study the problem of building a balltree from given leaf balls. Once the
tree structure is specified, the internal balls are determined bottom up from the leaf balls.
We would like to choose the tree structure to most efficiently support the queries needed
in practical usage. Efficiency will depend both on the distribution of samples and queries
and on the type of retrieval required. We first discuss several important queries and then
describe a cost function which appears to adequately approximate the costs for practical
applications. We then compare five different construction algorithms in terms of both the
cost of the resulting tree and the construction time. The algorithms are compared on sam-
ples drawn from several probability distributions which are meant to be representative of
those that arise in practice.

Implementation

Our implementation is in the object oriented language Eiffel [Meyer, 1989]. There are class-
es for balls, balltrees, and balltree nodes. “BALL” objects consist of a vector “ctr” which
holds the center of the ball and a real value “r” containing the radius. “BLT_ND” objects
consist of a BALL “bl”, and pointers “par, lt,rt” to the node’s parents and children. “BALL-
TREE” objects have a pointer “tree” to the underlying tree and a variety other slots to en-
hance retrievals (such as local priority queues and caches). All reported times are in
seconds on a Sun Sparcstation 1 with 16 Megabytes of memory, running Eiffel Version 2.2
from Interactive Software Engineering. Compilation was done with assertion checking off
and garbage collection, global class optimization, and C optimization on. As with any ob-
ject oriented language, there is some extra overhead associated with dynamic dispatching,
but this overhead should affect the different algorithms similarly.

A)

a
b

c

de
f

a b c d e f

A

B

C D E

C)B)

Figure 1. A) A set of balls in the plane. B) A binary tree over these balls. C) The balls in
the resulting balltree.

A

B

C
D

E

4 Queries which use Simple Pruning

Queries which use Simple Pruning

There are two broad classes of query which are efficiently supported by the balltree struc-
ture. The first class employs a search with simple pruning of irrelevant branches. The sec-
ond class requires the use of branch and bound during search. This section presents some
simple pruning queries and the next gives examples of the more complex variety.

Given a query ball, we might require a list of all leaf balls which contain the query ball. We
implement this as a recursive search down the balltree in which we prune away recursive
calls at internal nodes whose ball does not contain the query ball. If an internal node’s ball
doesn’t contain the query ball, it is not possible for any of the leaf balls beneath it to contain
it either. In the balltree node class “BLT_ND” we may define:

push_leaves_containing_ball(b:BALL,l:LLIST[BLT_ND]) is
-- Add the leaves under Current which contain b to l.

do
if leaf then

if bl.contains_ball(b) then l.push(Current) end
else

if bl.contains_ball(b) then
lt.push_leaves_containing_ball(b,l);
rt.push_leaves_containing_ball(b,l);

end; -- if
end; -- if

end;

Similarly, we might ask for all leaf balls which intersect a query ball. We prune away re-
cursive calls from internal nodes whose ball doesn’t intersect the query ball.

push_leaves_intersecting_ball(b:BALL,l:LLIST[BLT_ND]) is
-- Add the leaves under Current which intersect b to l.

do
if leaf then

if bl.intersects_ball(b) then l.push(Current) end
else

if bl.intersects_ball(b) then
lt.push_leaves_intersecting_ball(b,l);
rt.push_leaves_intersecting_ball(b,l);

end; -- if
end; -- if

end;

Finally, we might ask for all leaf balls which are contained in the query ball. Here we must
continue to search beneath any internal node whose ball intersects the query ball because
some descendant ball might be contained in it.

push_leaves_contained_in_ball(b:BALL,l:LLIST[BLT_ND]) is
-- Add the leaves under Current which are contained in b to l.

do
if leaf then

if b.contains_ball(bl) then l.push(Current) end
else

if bl.intersects_ball(b) then
lt.push_leaves_contained_in_ball(b,l);

Queries which use Branch and Bound 5

rt.push_leaves_contained_in_ball(b,l);
end; -- if

end; -- if
end;

A point is just a degenerate ball. Two important special cases of these queries in which
some of the balls are points are the tasks of returning all leaf balls which contain a given
point and returning all point leaves which are contained in a given ball.

Queries which use Branch and Bound

More complex queries require a branch and bound search. An important example for ball-
trees whose leaves hold points is to retrieve the m nearest neighbor points of a query point.
Using balltrees we may use a similar approach to that discussed in [Friedman, et. al., 1977]
for k-d trees. Again we recursively search the tree. Throughout the search we maintain the
smallest ball “bball” centered at the query point which contains the m nearest leaf points
seen in the search so far. In this algorithm we prune away recursive searches which start at
internal nodes whose ball doesn’t intersect the bball. This pruning is likely to happen most
effectively if at each internal node we first search the child which is nearer the query point
and then the other child. Because balltree nodes can intersect we cannot stop the search
when the bball lies inside node ball as is possible in k-d trees. Because node regions are
tighter around the sample points, however, balltrees may be able to prune nodes in situa-
tions where a k-d tree could not.

To retrieve the m nearest neighbors we maintain a priority queue of the best leaves seen
ordered by distance from the query point. We will only show the function for finding the
nearest neighbor, but the extension to the m nearest neighbors should be clear.

In this case we assume that nn_search is defined in a class which has “bball” as an attribute
and that its center “bball.ctr” has been set to the query point and its radius “bball.r” to a
large enough value that it contains the root ball. “nn” is another attribute which will hold
the result when the routine returns. “near_dist_to_vector” is a routine in the BALL class
which returns the distance from the closest point in the ball to a given vector.

 nn_search(n:T) is
-- Replace nn by closest leaf under n to bball.ctr, if closer than bball.r

local d,ld,rd:REAL;
do

if n.leaf then
d:=bball.ctr.dist_to_vector(n.bl.ctr);
if d < bball.r then bball.set_r(d); nn:=n end; -- reset best

else -- at internal node
ld:=n.lt.bl.near_dist_to_vector(bball.ctr);
rd:=n.rt.bl.near_dist_to_vector(bball.ctr);
if ld > bball.r and rd > bball.r then -- no sense looking here
else

6 Statistical Nature of the Data

if ld<=rd then -- search nearer node first
nn_search(n.lt);
if rd < bball.r then nn_search(n.rt) end; -- check if still worth searching

else
nn_search(n.rt);
if ld < bball.r then nn_search(n.lt) end; -- check if still worth searching

end; -- if
end; -- if

end; -- if
end;

There are several natural generalizations of this query to ones involving balls. Distance be-
tween points may be replaced by distance between ball centers, minimum distance be-
tween balls, or maximum distance between balls. In each case the minimum distance to an
ancestor node is a lower bound on the distance to a leaf and so may be exactly as above to
prune the search.

A query which arises in one of the construction algorithms we will describe below must
return the leaf ball which minimizes the volume of the smallest ball containing it and a que-
ry ball. The search proceeds as above, but with the pruning value equal to the volume of
the smallest ball which contains the query ball and a single point of the interior node ball.

Statistical Nature of the Data

The criterion for a good balltree structure depends on both the type of query it must sup-
port and on the nature of the data it must store and access. For most of the applications we
have in mind, it is appropriate to take a statistical view of the stored data and queries. We
assume that the leaf balls are drawn randomly from an underlying probability distribution
and that the queries are drawn from the same distribution. We would like systems to per-
form well on average with respect to this underlying distribution. Unfortunately, we ex-
pect distributions of very different types in different situations. A very powerful
nonparametric approach to performance analysis has begun to appear (e.g. [Friedman, et. al.
1977] and [Noga and Allison, 1985]) which gives provably good results for a wide variety
of distributions in the asymptotic limit of large sample size. In both of these references the
underlying distribution is required to be non-singular and in the large sample limit each
small region becomes densely sampled and locally looks like a uniform distribution. If an
algorithm behaves well on the uniform distribution and adjusts itself to the local sample
density, then it will have good asymptotic performance on non-singular distributions. Un-
fortunately, some of the most important applications have data of a very different charac-
ter. Instead of being smooth, the data itself may be hierarchically clustered or has its

Statistical Nature of the Data 7

support on lower dimensional surfaces. Part of the motivation for the development of the
balltree structure was that it should deal well with these cases.

For any particular statistical model, possibly singular, one may hope to perform an asymp-
totic analysis similar to that in [Friedman, et. al., 1977]. Because we are interested in the per-
formance on small data sets for a variety of distributions, we have taken an empirical
approach to comparing the different construction algorithms. We studied each algorithm
in 8 situations corresponding to 4 different probability distributions in 2-dimensions and
similar distributions in 5-dimensions. Samples from the 2-dimensional versions of these
distributions are shown in figure 2. Because the case in which the leaves are actually points
is very important, we have emphasized it in the tests.

The first distribution is the uniform distribution in the unit cube. For the reasons discussed
above, behavior on this should be characteristic of general smooth distributions. For the
second distribution we wanted to study a case with intrinsic hierarchical clustering. We
chose a distribution which is uniform on a fractal, the Cantor set. The one-dimensional
Cantor set may be formed by starting with the unit interval, removing the middle third,
and then recursively repeating the construction on the two portions of the interval which
are left. If points on the interval are expressed in ternary notation, then the Cantor set
points are those that have no “1’s” in their representation. In higher dimensions we just
take the product of Cantor sets along each axis. The third distribution is meant to study the
situation in which sample points are restricted to a lower dimensional nonlinear subman-
ifold. We draw points from a polynomial curve which is embedded in such a way that it
doesn’t lie in any affine subspaces. In the final distribution, the leaves are balls instead of
just points. The centers are drawn uniformly from the unit cube and the radii uniformly
from the interval [0,.1].

A B C D

Figure 2. 101 leaves from the four distribution types. A) Uniform B) Cantor C) Curve D) Uniform balls.

8 The Volume Criterion

The Volume Criterion

It might appear that these different distributions would require the use of different balltree
construction criteria in order to lead to good performance. We have found, however, that
a simple efficiency measure is sufficient for most applications. The most basic query is to
return all leaf regions which contain a given point. A natural quantity to consider for this
query is the average number of nodes that must be examined during the processing of a
uniformly distributed query point. As described above, to process a point, we descend the
tree, pruning away subtrees when their root region does not contain the query point. This
process, therefore, examines the internal nodes whose regions contain the point and their
children. We may minimize the number of nodes examined by minimizing the number of
internal balls which contain the point. Under the uniform distribution, the probability that
a ball will contain a point is proportional to its volume. We minimize the average query
time by minimizing the total volume of the regions associated with the internal nodes.
While this argument does not directly apply to the other distributions, small volume trees
generally adapt themselves to any hierarchical structure in the leaf balls and so maximize
the amount of pruning that may occur during any of the searches. We therefore use the to-
tal volume of all balls in a balltree as a measure of its quality. All reported ball volumes
were actually computed by taking the ball radius to a power equal to the dimension of the
space and so are only proportional to the true volume.

Unfortunately, it appears to be a difficult optimization problem to find the binary tree over
a given set of leaf regions which minimizes the total tree node volume. Instead, we will
compare several heuristic approaches to the construction. The next few sections describe
the five studied construction algorithms. In each case we give the idea of the algorithm and
a key Eiffel function for its implementation. So as not to obscure the structure, we have
eliminated all housekeeping and bulletproofing code used in the actual implementation.
Operations whose implementation is straightforward are not defined, the meaning should
be clear from context.

K-d Construction Algorithm

We will call the simplest algorithm the k-d construction algorithm because it is similar to the
method described in [Friedman, et. al., 1977] for the construction of k-d trees. It is an off-line
top down algorithm. By this we mean that all of the leaf balls must be available before con-
struction and that the tree is constructed from the root down to the leaves. At each stage
the algorithm splits the leaf balls into 2 sets from which balltrees are recursively built.
These trees become the left and right children of the root node. The balls are split by choos-
ing a dimension and a value and splitting the balls into those whose center has a coordinate
in the given dimension which is less than the given value and those in which it is greater.

K-d Construction Algorithm 9

The dimension to split on is chosen to be the one in which the balls are most extended and
the splitting value is chosen to be the median. Because median finding is linear in the num-
ber of samples, and there are stages, the whole construction is .

Introducing a class whose instances are arrays of balls yields a clean implementation. The
key function is “select_on_coord” which moves the balls around so that the balls associated
with a node are contiguous in the ball array. The entire construction algorithm then looks
very much like quicksort, except that different dimensions are manipulated on different re-
cursive calls.

In the class BALL_ARRAY we define a fairly conventional selection algorithm whose runt-
ime is linear in the length of the range.

select_on_coord (c,k,li,ui:INTEGER) is
-- Move elts around between li and ui, so that the kth element ctr
-- is >= those below, <= those above, in the coordinate c.

local l,u,r,m,i:INTEGER; t,s:T;
do

from l:=li; u:=ui until not (l<u) loop
r := rnd.integer_rng_rnd(l,u); -- random integer in [l,u]
t := get(r); set(r,get(l)); set(l,t); -- swap
m := l;
from i:=l+1 until i>u loop

if get(i).ctr.get(c) < t.ctr.get(c) then
m:=m+1;
s:=get(m); set(m,get(i)); set(i,s); -- swap

end; -- if
i:=i+1

end; -- loop
s:=get(l); set(l,get(m)); set(m,s); -- swap
if m<=k then l:=m+1 end;
if m>=k then u:=m-1 end

end -- loop
end;

To actually construct the tree, we initialize a BALL_ARRAY “bls” with the desired leaf
balls. The construction can then proceed in a natural recursive manner:

build_blt_for_range(l,u:INTEGER):BLT_ND is
-- Builds a blt for the balls in the range [l,u] of bls.

local c,m:INTEGER; bl:BALL
do

if u=l then -- make a leaf
Result.Create; Result.set_bl(bls.get(u));

else
c := bls.most_spread_coord(l,u); m := int_div((l+u),2); bls.select_on_coord(c,m,l,u); -- split left and right
Result.Create; Result.set_lt(build_blt_for_range(l,m)); Result.lt.set_par(Result); -- do left side
Result.set_rt(build_blt_for_range(m+1,u)); Result.rt.set_par(Result); -- do right side
bl.Create(bls.get(0).dim); bl.to_bound_balls(Result.lt.bl, Result.rt.bl); Result.set_bl(bl); -- fill in ball

end -- if
end;

The tree that is produced is perfectly balanced, but may not adapt itself well to any hierar-
chical structure in the leaf balls.

Nlog O N Nlog()

10 Top Down Construction Algorithm

Top Down Construction Algorithm

The k-d construction algorithm doesn’t explicitly try to minimize the volume of the result-
ing tree. For uniformly distributed data, it is not hard to see that it should asymptotically
do a good job. It is natural, however, to think that using an explicit volume minimization
heuristic to choose the dimension to cut and the value at which to cut it might improve the
performance of the algorithm. We refer to this approach as the “top down construction al-
gorithm”. As in the k-d approach we work recursively from the top down. At each stage
we choose the split dimension and the splitting value along that dimension so as to mini-
mize the total volume of the two bounding balls of the two sets of balls. To find this optimal
dimension and split value, we sort the balls along each dimension and construct a cost ar-
ray which gives the cost at each split location. This is filled in by first making a sequential
pass from left to right expanding a test ball to contain each successive entry and inserting
its volume in the cost array. While the exact volume of the bounding ball of a set of balls
depends on the order in which they are inserted, this approach gives a good approximation
to the actual parent ball volume. Next a sequential pass is made from right to left and the
bounding ball’s volume is added in to the array. In this manner the best dimension and
split location are found in time and the whole algorithm should take

.

 We implement this approach in a similar manner to the k-d approach. The array “cst” is
used to hold the costs of the different cutting locations.

fill_in_cst(l,u:INTEGER) is
-- Fill in the cost array between l and u. Split is above pt.

local i:INTEGER
do

bl.to(bls.get(l));
from i:=l until i>=u loop -- do left side

bl.expand_to_ball(bls.get(i));
cst.set(i,bl.pvol);
i:=i+1

end; -- loop
bl.to(bls.get(u));
from i:=u until i<=l loop -- do right side

bl.expand_to_ball(bls.get(i)); -- info relevant to i-1
cst.set(i-1,cst.get(i-1)+bl.pvol);
i:=i-1

end; -- loop
end;

The tree construction proceeds by filling in the cost array for each of the dimensions and
picking the best one to recursively proceed with.

build_blt_for_range(l,u:INTEGER):BLT_ND is
-- Builds a blt for the balls in the range [l,u] of bls.

local i,j,c,m, bdim,bloc:INTEGER; bcst:REAL; nbl:BALL
do

if u=l then -- make a leaf
Result.Create;
Result.set_bl(bls.get(u));

O N Nlog()
O N Nlog() 2()

On-line Insertion Algorithm 11

else
bdim:=0;bloc:=l;
from i:=0 until i=bls.dim loop

bls.sort_on_coord(i,l,u);
fill_in_cst(l,u);
if i=0 then bcst:=cst.get(l) end; -- initial value
from j:=l until j>=u loop

if cst.get(j)<bcst then bcst:=cst.get(j); bdim:=i; bloc:=j; end;
j:=j+1

end; -- loop
i:=i+1

end; -- loop
bls.sort_on_coord(bdim,l,u); -- sort on best dim
Result.Create;
Result.set_lt(build_blt_for_range(l,bloc)); Result.lt.set_par(Result);
Result.set_rt(build_blt_for_range(bloc+1,u)); Result.rt.set_par(Result);
nbl.Create(bls.dim); nbl.to_bound_balls(Result.lt.bl, Result.rt.bl); Result.set_bl(nbl);

end -- if
end;

On-line Insertion Algorithm

The next algorithm builds up the tree incrementally. We will allow a new node N to be-
come the sibling of any node in an existing balltree. The diagram shows the new node N

becoming the sibling of the old node A under the new parent P. The algorithm tries to find
the insertion location which causes the total tree volume to increase by the smallest
amount. In addition to the volume of the new leaf, there are two contributions to the vol-
ume increase: the volume of the new parent node and the amount of volume expansion in
the ancestor balls above it in the tree. As we descend the tree, the total ancestor expansion
almost always increases while the parent volume decreases. As the search for the best in-
sertion location proceeds, we maintain the nodes at the “fringe” of the search in a priority

A

A

P

N

12 On-line Insertion Algorithm

queue ordered by their ancestor expansion. We also keep track of the best insertion point

found so far and the volume expansion it would entail. When the smallest ancestor expan-
sion of any node in the queue is greater than the entire expansion of the best node, the
search is terminated. Nodes may be deleted by simply removing them and their parent and
adjusting the volumes of all higher ancestors. Notice that because of the properties of
bounding balls, in rare circumstances the expansion of an ancestor node due to a smaller
node may be larger than for a smaller node (this doesn’t happen if boxes are used instead
of balls).

The new volume in internal balls that is created by this operation consists of the entire vol-
ume of P plus the amount of expansion created in all the ancestors of P. Choosing the in-
sertion point according to the criterion of trying to minimize this new volume leads to
several nice properties. New balls which are large compared to the rest of the tree tend to
get put near the top, while small boxes which lie inside of existing balls end up near the
bottom. New balls which are far from existing balls also end up near the top. In this way
the tree structure tends to reflect the clustering structure of leaf balls.

This routine in the BALLTREE class returns a pointer to the best sibling in the tree. “tb” is
a test ball which is a global attribute of the class. “frng” is the priority queue which holds
the fringe nodes.

best_sib (nl:BLT_ND):BLT_ND is
-- The best sibling node when inserting new leaf nl.

local bcost:REAL; -- best cost = node vol + ancestor expansion
tf,tf2:BLT_FRNG[BLT_ND]; -- test fringe elements
done:BOOLEAN; v,e:REAL;

do
if tree.Void then -- Result.Void means tree is void
else

frng.clr;
Result:=tree; tb.to_bound_balls(tree.bl, nl.bl);
bcost:=tb.pvol;
if not Result.leaf then

tf.Create; tf.set_aexp(0.); -- no ancestors
tf.set_ndvol(bcost); tf.set_nd(Result);

On-line Insertion Algorithm 13

frng.ins(tf); -- start out the queue
end; -- if
from until frng.empty or done loop

tf := frng.pop;-- best candidate
if tf.aexp >= bcost then -- no way to get better than bnd

 done := true -- this is the bound in branch and bound
else

e := tf.aexp + tf.ndvol - tf.nd.pvol; --new ancestor expans
-- do left node
tb.to_bound_balls(tf.nd.lt.bl,nl.bl); v := tb.pvol;
if v+e < bcost then bcost := v+e; Result := tf.nd.lt end;
if not tf.nd.lt.leaf then

tf2.Create; tf2.set_aexp(e); tf2.set_ndvol(v);
tf2.set_nd(tf.nd.lt); frng.ins(tf2);

end; -- if
-- now do right node
tb.to_bound_balls(tf.nd.rt.bl,nl.bl); v := tb.pvol;
if v+e < bcost then bcost := v+e; Result := tf.nd.rt end;
if not tf.nd.rt.leaf then

tf2.Create; tf2.set_aexp(e); tf2.set_ndvol(v);
tf2.set_nd(tf.nd.rt); frng.ins(tf2);

end; -- if
end; -- if

end; -- loop
frng.clr;

end; -- if
end; -- best_sib

Once the sibling of the node is determined, the following routine will create a parent and
insert it and the new leaf into the tree. “repair_parents” recursively adjusts the bounding
balls in the parents of a node with a changed ball.

ins_at_node (nl,n:BLT_ND) is
-- Make nl be n’s sibling. n.Void if first node.

local nbl:BALL; npar,nd:BLT_ND;
 do

nl.set_par(npar); -- just in case something is there
nl.set_lt(npar);nl.set_rt(npar);
if tree.Void-- if nothing there, just insert nl
then tree := nl;
else

npar.Create; npar.set_par(n.par);
if n.par.Void then tree := npar;-- insert at top
elsif n.par.lt=n then n.par.set_lt(npar)
else n.par.set_rt(npar)
end; -- if
npar.set_lt(n); npar.set_rt(nl);
nl.set_par(npar); n.set_par(npar);
nbl.Create(dim);
nbl.to_bound_balls(nl.bl,n.bl);
npar.set_bl(nbl);
repair_parents(npar);

end; -- if
end; -- ins_at_node

To remove a node, we remove its parent and fix up the bounding balls of the ancestors.

rem(n:T) is
-- Remove leaf n from the tree. Forget its parent

local np,ns,vdt:BLT_ND;

14 Cheaper On-line Algorithm

do
if n.Void then-- do nothing if empty
elsif n.par.Void then tree.forget -- last node in tree
else

np:=n.par;
if n=np.lt then ns:=np.rt else ns:=np.lt end; -- sibling
ns.set_par(np.par);
if np.par.Void then tree:=ns
elsif np.par.lt=np then np.par.set_lt(ns)
else np.par.set_rt(ns) end;
np.Forget; n.set_par(np); -- just in case someone asks for it
from np:=ns.par until np.Void loop

np.bl.to_bound_balls(np.lt.bl,np.rt.bl); -- adjust balls
np := np.par

end; -- loop
n.set_par(vdt);

end; -- if
end; -- rem

Cheaper On-line Algorithm

We also investigated a cheaper version of the insertion algorithm in which no priority
queue is maintained and only the cheaper of the two child nodes at any point is further ex-
plored. Again the search is terminated when the ancestor expansion exceeds the best total
expansion.

cheap_best_sib (nl:BLT_ND):BLT_ND is
-- A cheap guess at the best sibling node for inserting new leaf nl.

local bcost:REAL;-- best cost = node vol + ancestor expansion
ae:REAL;-- accumulated ancestor expansion
nd:BLT_ND; done:BOOLEAN; lv,rv,wv:REAL;

do
if tree.Void then-- Result.Void means tree is void
else

Result:=tree; tb.to_bound_balls(tree.bl,nl.bl); wv:=tb.pvol;
bcost := wv;
ae:=0.;-- ancestor expansion starts at zero.
from nd:=tree until nd.leaf or done loop

ae:=ae+wv-nd.pvol; -- correct for both children
if ae>=bcost then done:=true -- can’t do any better
else

tb.to_bound_balls(nd.lt.bl,nl.bl); lv:=tb.pvol;
tb.to_bound_balls(nd.rt.bl,nl.bl); rv:=tb.pvol;
if ae+lv<=bcost then Result:=nd.lt; bcost:=ae+lv; end;
if ae+rv<=bcost then Result:=nd.rt; bcost:=ae+rv; end;
if lv-nd.lt.pvol<=rv-nd.rt.pvol -- left expands less
then wv:=lv; nd:=nd.lt;
else wv:=rv; nd:=nd.rt; end;

end; -- if
end; -- loop

end; -- if
end; -- cheap_best_sib

Bottom Up Construction Algorithm 15

Bottom Up Construction Algorithm

The bottom up heuristic repeatedly finds the two balls whose bounding ball has the small-
est volume, makes them siblings, and inserts the parent ball back into the pool. In some
ways this is similar to the Huffman algorithm for finding efficient codes. Here, though, the
cost depends on the combination of the two nodes being combined and so the choice be-
comes more expensive. The simplest, brute-force implementation maintains the current
candidates in an array and on each iteration checks the volume of the bounding ball of each
pair to find the best. A straightforward implementation of this approach requires passes
most of which are of size , for a total construction time of .

Improved Bottom Up Algorithm

Two observations allow us to substantially reduce the cost of this algorithm. If each node
kept track of the other node such that the volume of their joint bounding ball was mini-
mized and the volume of that ball, then the node with the minimal stored cost and its
stored mate would be the best pair to join. Secondly, most of the balls keep the same mate
when a pair is formed and when one’s mate is paired elsewhere the best cost can only in-
crease. As described in the last section, the balltree is an ideal structure for determining
each ball’s best mate. We therefore maintain a dynamic balltree using one of the insertion
algorithms for holding the unfinished pieces of the bottom-up balltree. An initial pass de-
termines the best mate for each node. The nodes are kept in a priority queue ordered by the
volume of the bounding ball with their best mate. As the algorithm proceeds some of these
mates will become obsolete, but the best bounding volume can only increase. We therefore
iterate removing the best node from the priority queue and if it has not already been paired,
we recompute its best mate using the insertion balltree. If the recomputed cost is less than
the top of the queue, then we remove it and its mate from the insertion balltree, form a par-
ent node above them, compute the parent’s best mate and reinsert the parent into the in-
sertion balltree and the priority queue. When there is only one node left in the insertion
balltree, the construction is complete. We present the routines for finding the best pair and
for merging them. “pq” is the priority queue of pending nodes and the variables “b1” and
“b2” will hold the best pair to merge. “has_leaf” tests whether a balltree has a given node
as a leaf.

find_best_pair is
-- Put best two to merge in b1,b2, and remove from pq and blt.

local done:BOOLEAN; btm:BLT_FPND
do

b1.Forget; b2.Forget;
from until done loop

if pq.empty then done:=true -- returns Void when done
else

btm := pq.pop;
if blt.has_leaf(btm) then -- if not there then keep on

N
O N2() O N3()

16 Improved Bottom Up Algorithm

blt.rem(btm);-- take it out of the tree
btm.set_bvol(blt.best_vol_to_ball(btm.bl)); --recomp
if pq.empty or else

btm.bvol <= pq.top.bvol then done:=true
else

pq.ins(btm); blt.cheap_ins(btm); -- try again
end; -- if

end; -- if
end; -- if

end; -- loop
if not btm.Void then

b1:=btm; b2:=blt.best_node_to_ball(b1.bl); blt.rem(b2);
end; -- if

end;

merge_best_pair is
-- Combine the best two, replace combo in pq and blt.

local bn:BLT_ND; bl:BALL; vbf:BLT_FPND
do

if (not b1.Void) and (not b2.Void) then
bn.Create;
bn.set_lt(b1.tree); bn.lt.set_par(bn);
bn.set_rt(b2.tree); bn.rt.set_par(bn);
bl.Create(blt.dim); bl.to_bound_balls(bn.lt.bl,bn.rt.bl);
bn.set_bl(bl); b1.Create;
b1.set_tree(bn); b1.set_bl(bl); -- never resize so can share
b1.set_bvol(blt.best_vol_to_ball(bl));
pq.ins(b1); blt.cheap_ins(b1);
b1:=vbf; b2:=vbf;

end; -- if
end;

The figures compare the construction time of the brute force approach against the algorith-
mic one for uniform data in 2, 5, and 10 dimensions and show that the speedup is substan-
tial.

Construction Data 17

Construction Data

In this section we present the experimental results giving the volume of the constructed
balltree and the construction time as a function of the number of leaves for each of the al-
gorithms and each of the distributions discussed above. In each graph a different dashing
pattern is used to denote each of the algorithms. The first figures label the curves and the
usage is the same in the others.

0 40 80 120 160 200
0.00

100.00

200.00

300.00

400.00

500.00

Number of Leaves

Construction Time

brute

clever

Figure 3. Construction time vs. size for bottum up
construction method. Brute force approach is
compared with clever one for 2-dimensional
uniformly distributed point leaves.

0 40 80 120 160 200
0.

180.

360.

540.

720.

900.

Number of Leaves

Construction Time

Figure 4. Construction time vs. size for bottum up
construction method. Brute force approach is
compared with clever one for 5-dimensional
uniformly distributed point leaves.

0 40 80 120 160 200
0.00

245.57

491.14

736.70

982.27

1227.84

Number of Leaves

Construction Time

Figure 5. Construction time vs. size for bottum up
construction method. Brute force approach is
compared with clever one for 10-dimensional
uniformly distributed point leaves.

18 Construction Data

0 100 200 300 400 500
0.

8.

16.

24.

32.

40.

Number of Leaves

Balltree Volume

Figure 7. Balltree volume vs. size for 2-
dimensional uniformly distributed point leaves.

ins
kd

top_dn

chp_ins

bot_up

0 100 200 300 400 500
0.00

50.98

101.95

152.93

203.90

254.88

Number of Leaves

Construction Time

Figure 8. Balltree construction time vs. size for 2-
dimensional uniformly distributed point leaves.

bot_up
top_dn

chp_ins

kd

ins

0 100 200 300 400 500
0.00

2.76

5.52

8.29

11.05

13.81

Number of Leaves

Balltree Volume

Figure 9. Balltree volume vs. size for 2-
dimensional Cantor set distributed point leaves.

0 100 200 300 400 500
0.

40.

80.

120.

160.

200.

Number of Leaves

Construction Time

Figure 10. Balltree construction time vs. size for 2-
dimensional Cantor set distributed point leaves.

0 100 200 300 400 500
0.00

0.85

1.69

2.54

3.38

4.23

Number of Leaves

Balltree Volume

Figure 11. Balltree volume vs. size for 2-dimensional point
leaves distributed on a curve.

0 100 200 300 400 500
0.00

24.21

48.43

72.64

96.86

121.07

Number of Leaves

Construction Time

Figure 12. Balltree construction time vs. size for 2-
dimensional point leaves distributed on a curve.

Construction Data 19

0 100 200 300 400 500
0.00

18.00

36.00

54.00

72.00

90.00

Number of Leaves

Balltree Volume

Figure 13. Balltree volume vs. size for 2-dimensional
uniformly distributed leaf balls with radii uniformly
distributed below .1.

0 100 200 300 400 500
0.00

86.72

173.44

260.15

346.87

433.59

Number of Leaves

Construction Time

Figure 14. Balltree construction time vs. size for 2-
dimensional uniformly distributed leaf balls with
radii uniformly distributed less than .1.

0 100 200 300 400 500
0.

200.

400.

600.

800.

1000.

Number of Leaves

Balltree Volume

Figure 15. Balltree volume vs. size for 5-
dimensional uniformly distributed point leaves.

0 100 200 300 400 500
0.00

289.84

579.69

869.53

1159.38

1449.22

Number of Leaves

Construction Time

Figure 16. Balltree construction time vs. size for 5-
dimensional uniformly distributed point leaves.

0 100 200 300 400 500
0.00

405.80

811.59

1217.39

1623.18

2028.98

Number of Leaves

Balltree Volume

Figure 17. Balltree volume vs. size for 5-
dimensional Cantor set distributed point leaves.

0 100 200 300 400 500
0.00

339.09

678.18

1017.27

1356.36

1695.45

Number of Leaves

Construction Time

Figure 18. Balltree construction time vs. size for 5-
dimensional Cantor set distributed point leaves.

Balltree Volume

168.05

Construction Time

20 Conclusions

Let us now discuss this data. The rankings of the different algorithms for cost of construc-
tion were almost identical in all the tests. The bottom up algorithm was virtually always
the most expensive (being eclipsed only occasionally by the top down algorithm). This is
perhaps to be expected since it must use one of the others during its construction. The k-d
algorithm in each case had the smallest construction time followed closely by the cheap in-
sertion algorithm. It is heartening that in each case the cost appears to be growing only
slightly faster than linear (with the possible exception of the top down algorithm).

The bottom up algorithm consistently produced the best trees followed closely by the in-
sertion algorithm. The k-d algorithm did very well on the uniform data (as expected) but
rather poorly on the curve and Cantor data. In the next section we will see that this is be-
cause it doesn‘t adapt well to any small-scale structure in the data. On the uniform data,
the top-down algorithm was the worst, followed by the cheap insertion algorithm. It is per-
haps surprising that the top-down approach did worse than the k-d approach on the uni-
form data. The top-down approach appears very sensitive to the exact structure of the data
as evidenced by the wild fluctuations in tree quality. It appears that it must make choices
which affect the whole structure and quality of the tree before their true impact is clear. All
of the algorithms did quite well on the curve data, particularly in 5 dimensions.

Conclusions

To give further insight into the nature of the trees constructed, figure 23 shows the interior
balls and tree structure produced by the five algorithms on 30 Cantor distributed points in
the plane. The k-d algorithm blindly slices the points in half taking no account of the hier-

0 100 200 300 400 500
0.00

214.90

429.79

644.69

859.58

1074.48

Number of Leaves

Balltree Volume

Figure 21. Balltree volume vs. size for 5-
dimensional uniformly distributed leaf balls with
radii uniformly distributed below .1.

0 100 200 300 400 500
0.00

460.36

920.72

1381.08

1841.44

2301.80

Number of Leaves

Construction Time

Figure 22. Balltree construction time vs. size for 5-
dimensional uniformly distributed leaf balls with
radii uniformly distributed less than .1.

Bibliography 21

archical structure. This allows it to produce a perfectly balanced tree but at the expense of
missing the structure in the data. The two insertion algorithms produced exactly the same
tree in this case. It appears to have early on made a decision which forced the final tree to
have a very large ball near the root. This is typical of the cost of using an on-line algorithm.
The top-down and bottom up algorithms found very similar trees of essentially equivalent
quality.

In conclusion, if the data is smooth and there is lots of it, the k-d approach is fast and simple
and has much to recommend it. If the data is clustered or sparse or has extra structure, the
k-d approach tends not to reflect that structure in its hierarchy. The bottom up approach in
all cases does an excellent job at finding any structure and aside from its construction cost
is the preferred approach. In situations where on-line insertion is necessary, the full inser-
tion algorithm approaches the bottom up algorithm in quality. The cheaper insertion ap-
proach does significantly worse but leads to construction times nearing those of the k-d
approach. A balltree constructed by any means may be further modified using the inser-
tion or cheaper insertion algorithms.

Bibliography

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel, “An Algorithm for Find-
ing Best Matches in Logarithmic Expected Time,” ACM Transactions on Mathematical
Software}, 3:3 (1977) 209-226.

Bertrand Meyer, Eiffel: The Language, Interactive Software Engineering, Goleta, CA, 1989.

Stephen M. Omohundro, “Efficient Algorithms with Neural Network Behavior,” Complex
Systems, 1 (1987) 273-347.

Stephen M. Omohundro, “Foundations of Geometric Learning,” University of Illinois De-
partment of Computer Science Technical Report No. UIUCDCS-R-88-1408 (1988).

Stephen M. Omohundro, “Geometric Learning Algorithms”, Proceedings of the Los Alam-
os Conference on Emergent Computation, (1989). (ICSI Technical Report No. TR-89-041)

M. T. Noga and D. C. S. Allison, “Sorting in Linear Expected Time,” Bit 25 (1985) 451-465.

Hanan Samet, “The quadtree and related hierarchical data structures,” ACM Com-
puting Surveys 16:2 June (1984) 187-260.6

22 Bibliography

Kd

Top down

Insertion and
Cheap insertion

Bottom up

Figure 23. The ball and tree structure created by the five algorithms on Cantor random data.

