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}@} Speaker Diarization...

=tries to answer the question:
“who spoke when?”

=using a single or multiple
microphone inputs

=without prior knowledge of
anything (#speakers, language,
text, etc...)
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Audiotrack:

Estimate “who spoke when” with no prior knowledge of speakers, #of speakers, words, or
language spoken.
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Audiotrack:

Segmentation: ‘

Estimate “who spoke when” with no prior knowledge of speakers, #of speakers, words, or
language spoken.
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Estimate “who spoke when” with no prior knowledge of speakers, #of speakers, words, or
language spoken.
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Speaker Diarization is
NOT

eSpeaker ID (Speaker ID is
supervized and needs prior
training)

eSpeaker Verification (is
supervized and returns yes/no
answer)

e Beamforming (as this requires
multiple mics, even though
beamforming can be used to
support diarization)
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speaker-adaptive ASR, video retrieval,
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olmportant basic technology for
various semantic audio analysis tasks

e Meeting retrieval, video conferencing,
speaker-adaptive ASR, video retrieval,
etc...

ol et’s take a look at some examples
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Application: Meeting
Browsing

006 Filter
Filter by Keywords: LA

cache

( ok ) ( Clear )

Filter by Person:
g i

v clus_0

V' clus_3

’
X
-l

V clus_8

D

B1 ¢ ) Tl

Applet started.
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1 I Application: Semantic
] } Navigation

Aanon Applet Viewey: sitcombrowser.SitComBrowser
INTERNATIONAI 000 Video O 0O Actors
COMPUTER SCIENCE Filter actors:
I IN S:SFE A4 oAk VR

L ! Jerry

V' George

WV female

V' Elaine

V' male

WV Kramer

NN.O Navigation
_Scenes  Top-5 Punchlines - Punchlines = Dialog  Search

[} ' ‘l - 4 .

[ -
=

Applet started.

G. Friedland, L. Gottlieb, A. Janin: “Joke-o-mat: Browsing Sitcoms Punchline by
Punchline”, Proceedings of ACM Multimedia, Beijing, China, October 2009.
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N Application: Video
|@[eN91 Duplicate Detection

| G /,‘ & o [ /ec2-72-44-49-80.2-1.compute-1.amazonaws.com/Experiment. swi v (, v a0b7 Q
Akt le Nachrichte Cmal diba db24 Bank of Americ Google Recent Earthquakes ARC.com Full Eplso |Ferret - Home w 118 (m:
3 ShoeSurfer: Camper: Minie-29 9 Experimentswf (application/x-. M Cma nbox - fractor@gma & SIOX: Simple Inmeractive Object
Cruxle Copyright Detector Demo
VIDEOS TO BE TAKEN DOWN
Videos in the database Perfect Match
Bill_Gates_and_Steve_Jobs Everyone_lkes_Appl
Very High Probability Match
High Probability Match
L
Provide Youtube URL in the above box
Copyrighted videos to be monitored
Bill_Gates_Praising_Apple_Comp_20s.fiv Medium Probability Match (0)
Bill_Gates_Praising_Apple_(
Letterman_s_tribute_to_Bill_¢ Low Probability Match (1)
Yes, Delete All
]
Provide Youtube URL in the above box Delete Video Select the video to be deleted and click "Delete Video" button
ec2-72-44-49-80.2-1 compute- 1 amazonaws com gelesen {, 12.101s
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v st e used as underlying support for...
eBeamforming

eVisual Localization

eVideo Analysis: Object Detection,
Event Detection, Scene Detection

ebehavior-level analysis tasks, such as
dominance detection

eRobotics Applications (e.g. addressing
people)

eSupport for adaptive speech
recognition
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}M} Main Drive: NIST RT Eval
| ]

B eSpeaker Diarization was evaluated as
part of the NIST Rich Transcription
Evaluation (since about 2002)

eldea: Create “Rich Transcripts” of
broadcast news, later meetings.

eEvaluated on Real-World data
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Typical Component
Composition for RT

Speaker _ _
Diarization "who spoke when" "who said what" higher-level analysis
Audio —7 Speaker Indexing, Search, Question
Answering

Attribution Retrieval

Recognition

Summarization

"what was said"

Relevant Web
Scraping

"what are the
main points"

"what's relevant
to this"

11
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Answering
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Attribution

Indexing, Search,
Retrieval

Recognition

Summarization

"what was said"
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Audio Signal

Feature @

Extraction

*

|
MFfC Speech Only
|

Metadata

Speech/Non-

Speech Detector \)
S ———————

12
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} Output Format of
1 Diarization

oRTTM files (as defined by NIST)

eExample:

SPEAKER soupnazi 1 40.0 2.5 <NA> <NA> George <NA>
SPEAKER soupnazi 1 42.5 2.5 <NA> <NA> Jerry <NA>
SPEAKER soupnazi 1 45.0 2.5 <NA> <NA> female <NA>

elarge amount of tools available to
deal with these files.
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. e US NIST defines error metrics and is

evaluating speaker diarization on a
regular basis
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}M} Error Measurement

~ eUS NIST defines error metrics and is
evaluating speaker diarization on a
regular basis

eError metrics is called ‘Diarization
Error Rate’ (DER)

e All tools available open source
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DER =

DER = The amounts of time a speaker

has been assighed wrongly, missed,
assumed when there is none, or
assumed solely when there is more
than one relative to the length of the

audio.

15
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eOriginally: Segment first, cluster later

Chen, S. S. and Gopalakrishnan, P., “Clustering via the bayesian information
criterion with applications in speech recognition,” Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing, 2001, Vol. 2,
Seattle, USA, pp. 645-648.
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eOriginally: Segment first, cluster later

Chen, S. S. and Gopalakrishnan, P., “Clustering via the bayesian information
criterion with applications in speech recognition,” Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing, 2001, Vol. 2,
Seattle, USA, pp. 645-648.

e More efficient: Top-Down and
Bottom-Up Approaches

16
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1m] Segmentation: Secret
I I Sauce

eHow do you distinguish speakers?

e Combination of MFCC+GMM+BIC
seems unbeatable!

e(Can be generalized to Audio Percepts

17
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| Audio Signal
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: Mel-Scale
gre-emphasis Filterbank
Windowing Log-Scale
DCT
MFCC |
power cepstrum of signal = |F {log(|F {the Signa.l}|2) } |2

18
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1 MFCC: Mel Scale

% 10°
15 T T T T T T
10 F || .
5 F g
LW g
D — 1 1 1 1 1 1 1
0 a0 1000 1500 2000 2500 3000 3500
Freq. (Hz)

1 T T T T T T T
asHAAAN T W :
0bF =
0.4 F -
0.2 2

D Jle 4 "..l AN lll ol L 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500
Freq. (Hz)
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Trammg of Mixture
Models

Goal: Find aj for f(z) = Za fy(x:6;).

1=1

Expectation: ;=

Maximization: a =~ > Ui

22
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1
BIC =log p(X|®) — szlogN

where
X Is the sequence of features for a segment,

O are the parameters of the statistical model for the segment,
K is the number of parameters for the model,
N is the number of frames in the segment,

A is an optimization parameter.

23
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I I Criterion: Explanation

A 1 N
) \ A meE A

W e BIC penalizes the complexity of the
model (as of number of parameters in
model).

e BIC measures the efficiency of the
parameterized model in terms of
predicting the data.

e BIC is therfore used to choose the
number of clusters according to the
intrinsic complexity present in a
particular dataset.

24
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Bayesian Information

@
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IC I'Criterion: Properties

eBIC is a minimum description length

criterion.

25
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1m] Bayesian Information
I I Criterion: Properties

eBIC is a minimum description length
criterion.

eBIC is independent of the prior.

olt is closely related to other penalized
likelihood criteria such as RIC and the
Akaike information criterion.
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Bottom-Up Algorithm

Clustert '

Cluster1

< Start with too many clusters (initialized randomly)
“ Purify clusters by comparing and merging similar clusters
+ Resegment and repeat until no more merging needed
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] | Diarization

» Speaker Diarization research @ ICSI since 2001

» Various versions of Diarization Engines
developed over the years

- Status: Research code but stable for some
applications that are error tolerant
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<*Basic (single mic, easy installation)
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<+ Audio/Visual (single and multi mic, for
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TR S Varlants

<*Basic (single mic, easy installation)
“+Fast (single mic, multiple CPU cores)
<+ Super fast (single mic, multiple GPUs)

“Accurate but slow (multi mic, additional
preprocessing)

<+ Audio/Visual (single and multi mic, for
localization)

<+0Online (single mic, “who is speaking now”)

28




INTERNATIONAI

\\\\\\\
llllllllllllllll

Basic Speaker
Diarization: Facts

29




l l
l l
1 l

CUNFPL \ \
I N S T1T UT E

Basic Speaker
Diarization: Facts

elnput: 16kHz mono audio
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Basic Speaker
Diarization: Facts

elnput: 16kHz mono audio

efFeatures: MFCC19, no delta or
deltadelta

eSpeech/Non-Speech Detector
external

eRuntime: ~ realtime (1h audio needs
1h processing on a single CPU,
excluding speech/non-speech)
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eSame as Basic Speaker Diarization
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Multi-CPU Speaker
Diarization: Facts

~ eSame as Basic Speaker Diarization

eRuntime: Dependent on number of
CPUs used.
Example: 8 cores runtime = 14.3 x
realtime, i.e. 14minutes of audio need
1 minute of processing.
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Multi-CPU Speaker
Diarization: Facts

eSame as Basic Speaker Diarization

eRuntime: Dependent on number of
CPUs used.
Example: 8 cores runtime = 14.3 x
realtime, i.e. 14minutes of audio need
1 minute of processing.

eRuntime bottleneck usually: Speech/
Non-Speech Detector
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GPU Speaker Diarization:
Facts
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GPU Speaker Diarization:
Facts

eSame as Basic Speaker Diarization
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GPU Speaker Diarization:
Facts

eSame as Basic Speaker Diarization

eRuntime: 250 x realtime, i.e. 1h of
audio is processed in 14.4sec!
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1m] Facts

~ eSame as Basic Speaker Diarization

eRuntime: 250 x realtime, i.e. 1h of
audio is processed in 14.4sec!

eUses current CUDA NVidia Framework
as backend.
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GPU Speaker Diarization:
Facts

~ eSame as Basic Speaker Diarization

eRuntime: 250 x realtime, i.e. 1h of
audio is processed in 14.4sec!

eUses current CUDA NVidia Framework
as backend.

efFrontend: Python!
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GPU Speaker Diarization:
Facts

eSame as Basic Speaker Diarization

eRuntime: 250 x realtime, i.e. 1h of
audio is processed in 14.4sec!

eUses current CUDA NVidia Framework
as backend.

efFrontend: Python!

eRuntime bottleneck usually: Speech/
Non-Speech Detector, Feature
Extraction

31




] Demo: 1CPU vs 8CPU vs
' GPU
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} I Most Accurate Speaker

] } Diarization: Overview
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Audio Signal

'

jpiiamic Ra.mge Wiener Filtering
| Compression | | |

Beamforming

Delay
Audio Audio Features
y ' .
Short-Term Long-Term Prosodics \ |
B Bt (only speech) Segmentation
Extraction Extraction

MFCC

Prosodics Diarization " "
—> "who spoke when

Initial Segments

Speech/Non- EM _
Speech Detector Clustering Clustering
MFCC
(only
Speech) 33
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Audio/Visual Speaker
Diarization: Overview

Audio Signal

l

Feature

Extraction

MFCC MFCC
'

(only
Speech)

"who spoke when"

Speech/Non-
Speech Detector

> Invert Visual "where the speaker was"
Models

Video Activity
Events (only Speech
l Regions)

Feature
Extraction

Video Signal

34
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MPEG-4
Video

n-dimensional
activity vector

ivide Frame
nto n Region

Detect Skin
Blocks

Avg. Motion
Vectors

Windowsize: 400ms

I .
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e¢One engine for audio and
video
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I Audio/Visual Speaker
1 Diarization: Facts

e¢One engine for audio and
video

eScales with n cameras
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} } Audio/Visual Speaker
] 1 Diarization: Facts

e¢One engine for audio and
video

eScales with n cameras

eRobust against visual
changes such as different
cloth, occlusions, etc...

“A voiceprint does not care
about somebody dimming
the light”
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Audio/Visual Diarization:
Example Video
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v+ o eThere is no overlapped speech

e The signal is clean
e NO environmental noise
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-1 v eThere is no overlapped speech

e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

38




1
l
]

1 N FRNATIONA/
COMPUTER S( .
I N S 1

l
l
l

In a perfect world...

~ v eThere is no overlapped speech

e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
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In a perfect world...

~ v eThere is no overlapped speech

e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
eSpeakers are non-emotional
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In a perfect world...

" eThere is no overlapped speech

e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
eSpeakers are non-emotional
eRecording is at 16kHz.
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}m} In a perfect world...

v eThere is no overlapped speech
e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
eSpeakers are non-emotional
eRecording is at 16kHz.
eRecording is 15-60 minute length
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Current Results using

Different Inputs

Error/System Basic System: | 8 Audio 1 Audio Stream | 1 Audio
1 Audio Streams + 1 Camera Stream +
Stream 4 Cameras
Diarization Error 32.09%| 27.55% 27.52% 24.00%
Rate
Relative baseline 14% 14% 25%
mprovement
Core Speed 1.0 2.2 1.4 1.3
(X realtime)

12 Meeting Recordings from AMI corpus

39
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Most Accurate Results

Error/System MFCC only | Full System Full System
(basic + One Camera
system)
Diarization Error Rate 32.09% 20.33% 18.989%
Relative Improvement | bhaseline 36% 41%
Core Speed 1.0 2.5 2.9
(X realtime)

12 Meetings from AMI corpus “VACE Meetings”
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- eOverlapped Speech

eShort Speech Segments (<2s)
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N eOverlapped Speech

eShort Speech Segments (<2s)
eEnvironmental Noise
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eShort Speech Segments (<2s)
eEnvironmental Noise
e_ow SNR
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N eOverlapped Speech

eShort Speech Segments (<2s)
eEnvironmental Noise
e_ow SNR

eBad Speech/Non-Speech Detector
performance based on training data
mismatch
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lml Top Error Sources
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[ eOverlapped Speech
eShort Speech Segments (<2s)
eEnvironmental Noise
eLow SNR

eBad Speech/Non-Speech Detector
performance based on training data
mismatch

eParameter mismatch, e.g. too few
initial clusters

41
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<1 eThere is no overlapped speech
e The signal is clean
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< eThere is no overlapped speech

e The signal is clean
e NO environmental noise
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v v eThere is no overlapped speech

e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

42




} } Optimal Performance is
] 1 achieved when...

v~ @There is no overlapped speech
e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
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] 1 achieved when...

v eThere is no overlapped speech
e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
eSpeakers are non-emotional
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} } Optimal Performance is
] 1 achieved when...

“<r v @There is no overlapped speech
e The signal is clean
eNoO environmental noise
eLimited amount of speakers (4 or so)

eSpeaker are well-distinguishable in
their voice (e.g. male - female, young

- old)
eSpeakers are non-emotional
eRecording is at 16kHz or higher.
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Future Work!

s
LL
O

60

50

40

30

20

10

0

B Miss w/ Olap
I Miss w/o Olap|,
B Spkr w/ Olap
B Spkr w/o Olap|

0.51- 0.73- 099- 1.23- 1.50- 1.84- 226- 285- 3.57- 4.76-
073 099 123 150 184 226 285 357 476 1996

Segment Durations (S)
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Thank_ You!
Questions?

Some of the Presented Work
performed together with:
Mary Knox, Katya Gonina, Adam Janin
and others.




