EE 225D LECTURE ON DIGITAL FILTERS

4 N

University of California
Berkeley

College of Engineering
Department of Electrical Engineering
and Computer Sciences

Professors : N.Morgan / B.Gold
EE225D Spring,1999

Digital Filters

Lecture 7

N

N.MORGAN / B.GOLD LECTURE 7 7.1




EE 225D

LECTURE ON DIGITAL FILTERS

/
1. Example of inverse z-transform use.
- Let input beu(n) and filter bg(n) = ay(n—1) + x(n)
X(2) = 5 x(n)z" x(n) = u(n) \ \ \ \ e
n=0 n
1 1 Z''dz
Y(2) = SO n) = —
(2 1-az’ y(n) 2TTJf(l—z‘l)(l—az‘l)
1 n—1d .
Basic theorem 5= 2 i =a fornz0
]"1—-az
=0 forn< O
This allows computation of the integral to Y1) = 11_ aa n=0
This result can be proved by iteration.
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2. Steady state respond to a complex exponent@l u(n)

y(n) = ¥ h(mx(n-m) =y x(m)h(n—m)
If x(n) = €"u(n), theny(n) from above is

y(n) = y h(me ™™ = &y h(me™"

00

S =y-5 ,s0 y(n) = éw”[z h(me" - 5 h(m)e“”}

m=0 m=n+1 m=0 | | m=n+1 |

steady state Transmit h(m O O

Steady state value of(n) = €"'[H(2)],. m - oo, thus sum- 0
as n —» oo

So the Frequency response is the value of the z-transform evaluated

on the unit circle.
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3. Geometric Interpretation of Steady State Freqguency Response
1 _Z

for simple first order diff equation : H(z) = - =
1—-az Z—a

nit circle
e _ .. €
KAIC H(z) at z = € |s]c
NBE

General Rule

Given a collection of poles and zeros in the complex z-plane,

the Frequency response at afy gis where Is the product of
all vectors to the zeros arfd  is the product of all vectors to the poles.

[special rules apply for multiple pole and zeros.]

N

N.MORGAN / B.GOLD LECTURE 7 7.4




EE 225D LECTURE ON DIGITAL FILTERS

4 N

Preview of the Rest of the Material

Filtering concepts. - approximate problem
. Sampling and Impulse Invariance

. Bilinear Transformation

. The DFT

. Circular Convolution and Linear Convolution

Basic FFT Concept.
. DFT’s and Filter Banks

N O O A W N P
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5. Approximation Problem

Example of Ideal Filters

Important Point

Linear Analog filters of R, L, C

must have frequency responses
that are rational functions m.
Similary, linear digital filter

must have rational functions in
ejco

A(w)

L

Wc

Ideal low pass
W

Ideal band pass

- ()

Ideal band step

> W

Ideal band pass

| differentiator
> ()
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Analog designers tackle the approximation problem by specifying

a REAL function on the® axis.

Example (H(jw)|* = 1 on
(W0
1+ o]
H(w)| |
- g 3-db point

|
|
1
1
|
|
|
|
| ..-w
mﬂ

Figure 7.1 : Butterworth Frequency Response for Different n.
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wl!'
Frequency

Figure 7.2 : Chebyshev Freqguency Response for n=4.
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If a suitablgH(jw)|* is chosen, it can lead to a specification in the complex

s-plane ofH(S) and this function holds true Everywhetbe s-plane.

Let’s normalize, so thayY = % and then et |y

C

1
1+ (=s)"

So H(s)H " (s) =

N
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n=1
H(H(=s) = 1isz <‘>
H(s) H(-s)
//\\n =2
|/
//\\n =3
HE)HS) = 1is“’ &\‘//
NS /
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Figure 7.4 : Comparison of Group Delay for Four Types, A = Butterworth,
B = Chebyshev, C = Elliptic, D = Bessel, for a low pass filter
\_ with a 500Hz corner frequency. Y
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Raders channel vocoder experiment - Butterworth filter bank yielded
better results than Chebyshev.
Note :Bessel and Lenner filters have good phase response and
were used in Vocoders.

Question :

How do we construct digital filters that give good frequency responses?

* Impulse Invariance - Linear analog filters have a given impulse response.

h(t)

& 2 W = time
T

. /
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FOLDED SPECTRUM OF
FILTER 4 FILTER 4 FOR NO OVERLAP

FOLDED SPECTRUM OF
FILTER 4 FILTER 4 FOR 2 :1 OVERLAP

FOLDED SPECTRUM OF
FILTER 4 FILTER 4 FOR 4:1 OVERLAP

0 4 B 12 16 20 24

Figure 7.16 : Aliasing Effects of Hopped FFT’s.
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Construct a Digital Filtethat has an impulse response

that are the samplesoft) . jw

h(n) = h(nT) _ H(s)
S, IS real

Start with a simple analog filter.

C _ -1 Al |:| _ —s,t
h(n) = L ESD—+ 50 = Ae

—S,
h(n) = Ae™" / X
and H(z) = h(n)z" = L \
(@) = 3h(Wz" = =2

. /
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Procedure
- Find impulse response of suitable analog filter.
- Sample it to find(n)
- Take z-transform to find transfer functiblf{z)
NS /
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Example of Impulse Invariant Design for a Very Simple Case.

% . 1/(sC) _ 1 1
R L Filter is = and = _—
- ~c— ~. L1 1+sRC >~ TRC
sC
~@E
+ 71
n) = e'y(n—1) +x(n
Digital Filter \J y(m = ey(n=1)+x(n)

1
H(z) = =
1-7'¢" K x
L=

. /
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Aliasing is prevented by using the bilinear transfom to find the digital filte
g 2=l ,_1+s
z+1 1-s
When s =jw z-= 1—+Jﬂ) 1Z = 1| jow axis maps into
—JW unit circle.
Stated without proof - Left half s-plahe imterior of z-plane unit circle
Right half s-plane]  exterior of z-plane unit circle.
NS
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: 1 1 z+1
Simple example = - H
P P 1+SRCD z-1 z+1+(z-1)RC (2
1+ ——=RC
z+1
z+1
H(z) =
(2) (1-RC) +z(1+RC) K\
As w- M, H(E)D 0 K/l—RC
t No Folding. 1+RC
For more complex filter designs, multiple zeros appearFat-1
NS /
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Discrete Fourier Transform

Consider a finite duration sequence.

" . 2 " Related to z-transform
X = 3 x(nW =€ Related to Fourier transfor
n=0 Related to Laplace transfor
1" N . Related to Fourier Series
Inverse x(n) = Nzxk\/\f

Important parameters

Size of DFT

Size of data.
Window

How often the DFT is done.

L Sampling rates.
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f(nT) = F (k)
even & even
odd = odd
even and real = even and real
odd and real o odd and imaginary
{ real part even
real & ; .
imaginary part odd
. . {reul part odd
imaginary e ; ;
imaginary part even
even and imaginary = even and imaginary
odd and imaginary <  odd and real

Table 7.1 : Relations between Sequence and its DFT ; recall that an “odd”

sequence is antisymmetric, and an “even” sequence is symmetri

~
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* The DFT can implement an FIR filter exactly.

Because
a) The product of two DFT’s corresponds to the circular convolution
of two signals
and

b) By augmenting with zeros, circular convolution can be made equivalent

to linear convolution.

. /
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The DFET can Implement Linear Convolution.
X, = X, W° + X, W + X, W + X, W™
Y. = VW + y, W+ y, W + y, W Yo
XkYk = XoYo + XiYs + XY, + X3Y1 Yy Vi
Y-
Y
+ + + +
XoY: T XiYo T XY + XY, Vo v,
Circular
Convolution y
N /
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Circular
Convolutio

N

T XY, T XiY: T XYo T XYs

T XoYs T XY, XY+ XYo

Yo

Y1
Y-
Yo

Y1
Y-

~
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Linear Convolution

~

ioooxoxlxzxgiooo
Yo 'YV V. ¥, ¥ 0 0 0
XoYs + X,Yo io Y. Yo Vi Y, O oi 0
Xo¥a XYy + XY, O Y. Y. ¥i Yo 00
i 0 ¥ ¥ Yi Yoo O
0 0 0 Y ¥ Y ¥ 0 0
i 0 0 0 ¥% %'V: % 0 0
Vs Vo Yo Vi Y
\

7.24



EE 225D

LECTURE ON DIGITAL FILTERS

-

x(6):

x(0)

|

-

1h(6) o)

WS A(S)
L

H?]
— h

hl[E}l 1::'[2 fh{d} W2)

J:l
i_J

Figure 7.10 : Circular Convolution of Two 8 Point Sequences.
Only y(0), y(2), y(4) and y(7) are shown. All Outer Circles Carry the Same

ﬂ%*"'sﬁi x(1) h2)
//ury W) m
\\

m;n}l

\_ Sequence as the Upper Left Circle.
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Figure 7.11 : Linear Convolution of Two Finite Length Sequences by DFT.

NS

/

N.MORGAN / B.GOLD

LECTURE 7 7.26



EE 225D LECTURE ON DIGITAL FILTERS
4 N
~ M
0 I 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
j6 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 32 53 54 55 56 57 58 59
|
\
L \
0.0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 08 0.9 0.10 0.11
R D 5 (R O O E O Y T B ) (0 OO
19 2.0 2.2 2.3 2 XA 26 27 L 2N L8 2]
1.6 3.1 37 3.3 34 3.8 Yo &7 AR LY 5010 ol
1.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 410 4.1}
- /
N.MORGAN/B.GOLD LECTURE 7 7.27



EE 225D LECTURE ON DIGITAL FILTERS

4 N
DFT of each Row - LM Operations
Twiddle the Resulting Matrix - LM Operation
DFT of each Column - Mf.Operation
Total ML(M+L+1) M=12 L =5
\ M+L+1= 18
DFT of (ML)* = ML(ML)
ML = 60
Complete Arra _
P 4 savings of ~ 3:1
BUTeg. M =100Q L =20
M+L+1 = 1021
ML = 20, 000 savings of ~ 20:1
N /
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