University of California Berkeley

College of Engineering Department of Electrical Engineering and Computer Sciences

Professors: N.Morgan / B.Gold

EE225D

Spring,1999

Digital Filters

Lecture 7

1. Example of inverse z-transform use.

- Let input be u(n) and filter be y(n) = ay(n-1) + x(n)

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-1} \qquad x(n) = u(n)$$

$$Y(z) = \frac{1}{1 - az^{-1}}$$
 so $y(n) = \frac{1}{2\pi j} \oint \frac{z^{n-1} dz}{(1 - z^{-1})(1 - az^{-1})}$

Basic theorem
$$\frac{1}{2\pi j} \oint \frac{z^{n-1} dz}{1 - az^{-1}} = a^n \quad \text{for } n \ge 0$$
$$= 0 \quad \text{for } n < 0$$

This allows computation of the integral to be $y(n) = \frac{1 - a^{n+1}}{1 - a}$ $n \ge 0$

This result can be proved by iteration.

2. Steady state respond to a complex exponential $e^{jwn}u(n)$

$$y(n) = \sum_{m=0}^{n} h(m)x(n-m) = \sum_{m=0}^{n} x(m)h(n-m)$$

If $x(n) = e^{jwn}u(n)$, then y(n) from above is

$$y(n) = \sum_{m=0}^{n} h(m)e^{jw(n-m)} = e^{jwn} \sum_{m=0}^{n} h(m)e^{-jwm}$$

$$\sum_{m=0}^{n} = \sum_{m=0}^{\infty} - \sum_{m=n+1}^{\infty} , \text{ so } y(n) = e^{jwn} \left[\sum_{m=0}^{\infty} h(m)e^{jwn} - \sum_{m=n+1}^{\infty} h(m)e^{-jwn} \right]$$
steady state Transmit $h(m) \Rightarrow 0$

Steady state value of
$$y(n) = e^{jwn} [H(z)]_{z=e^{jw}}$$
 $m \to \infty$, thus sum $\to 0$ as $n \to \infty$

So the Frequency response is the value of the z-transform evaluated on the unit circle.

3. Geometric Interpretation of Steady State Frequency Response

for simple first order diff equation: $H(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$

$$H(z)$$
 at $z = e^{jw}$ is $\frac{e}{f}$

General Rule

Given a collection of poles and zeros in the complex z-plane, the Frequency response at any W is $\frac{N}{D}$ where N is the product of all vectors to the zeros and D is the product of all vectors to the poles. [special rules apply for multiple pole and zeros.]

Preview of the Rest of the Material

- 1. Filtering concepts. approximate problem
- 2. Sampling and Impulse Invariance
- 3. Bilinear Transformation
- 4. The DFT
- 5. Circular Convolution and Linear Convolution
- 6. Basic FFT Concept.
- 7. DFT's and Filter Banks

5. Approximation Problem

Example of Ideal Filters

Important Point

Linear Analog filters of R, L, C must have frequency responses that are rational functions in ω . Similarly, linear digital filter must have rational functions in $e^{j\omega}$

Ideal band pass differentiator → ω

Analog designers tackle the approximation problem by specifying a <u>REAL</u> function on the $j\omega$ axis.

Example:
$$|H(j\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}$$

Figure 7.1: Butterworth Frequency Response for Different n.

Figure 7.2 : Chebyshev Frequency Response for n=4.

If a suitable $|H(j\omega)|^2$ is chosen, it can lead to a specification in the complex

s-plane of H(s) and this function holds true Everywhere in the s-plane.

Let's normalize, so that $\gamma = \frac{\omega}{\omega_c}$ and then let $s = j\gamma$.

So
$$H(s)H^*(s) = \frac{1}{1 + (-s^2)^n}$$

$$H(s)H(-s) = \frac{1}{1-s^2}$$

$$H(s)H(-s) = \frac{1}{1+s^4}$$

$$n = 2$$

H(-s)

H(s)

$$H(s)H(-s) = \frac{1}{1-s^6}$$

Figure 7.4 : Comparison of Group Delay for Four Types, A = Butterworth, B = Chebyshev, C = Elliptic, D = Bessel, for a low pass filter with a 500Hz corner frequency.

Raders channel vocoder experiment - Butterworth filter bank yielded better results than Chebyshev.

Note: Bessel and Lenner filters have good phase response and were used in Vocoders.

Question:

How do we construct digital filters that give good frequency responses?

* Impulse Invariance - Linear analog filters have a given impulse response.

Construct a <u>Digital Filter</u> that has an impulse response that are the samples of h(t).

$$h(n) = \hat{h}(nT)$$

Start with a simple analog filter.

$$\hat{h}(n) = L^{-1}\left(\frac{A_1}{S+S_1}\right) = A_1 e^{-s_1 t}$$

$$h(n) = A_1 e^{-s_1 nT}$$

and
$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n} = \frac{A_1}{1 - e^{-s_1 T} z^{-1}}$$

Procedure

- Find impulse response of suitable analog filter.
- Sample it to find h(n).
- Take z-transform to find transfer function H(z).

Example of Impulse Invariant Design for a Very Simple Case.

Digital Filter

$$H(z) = \frac{1}{1 - z^{-1} e^{s_1 T}}$$

$$y(n) = e^{s_1 T} y(n-1) + x(n)$$

Aliasing is prevented by using the bilinear transfom to find the digital filter.

$$s \rightarrow \frac{z-1}{z+1}, z = \frac{1+s}{1-s}$$

When
$$s = j\omega$$
 $z = \frac{1+j\omega}{1-j\omega}$ $|z| = 1$ $j\omega$ axis maps into unit circle.

Stated without proof - Left half s-plane \Rightarrow imterior of z-plane unit circle Right half s-plane \Rightarrow exterior of z-plane unit circle.

Simple example $\frac{1}{1+sRC} \Rightarrow \frac{1}{1+\frac{z-1}{z+1}RC} = \frac{z+1}{z+1+(z-1)RC} = H(z)$

$$H(z) = \frac{z+1}{(1-RC)+z(1+RC)}$$

As $\omega \to \Pi$, $H(e^{j\omega}) \Rightarrow 0$ No Folding.

For more complex filter designs, multiple zeros appear at z = -1.

Discrete Fourier Transform

Consider a finite duration sequence.

$$X_k = \sum_{n=0}^{n-1} x(n) W^{nk} \qquad W = e^{-j\left(\frac{2\pi}{N}\right)}$$

Inverse
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_k W^{-nk}$$

Related to z-transform Related to Fourier transform Related to Laplace transform Related to Fourier Series

Important parameters

Size of DFT ______N

Size of data.

Window

How often the DFT is done.

Sampling rates.

Table 7.1: Relations between Sequence and its DFT; recall that an "odd" sequence is antisymmetric, and an "even" sequence is symmetric.

* The DFT can implement an FIR filter exactly.

Because

a) The product of two DFT's corresponds to the circular convolution of two signals

and

b) By augmenting with zeros, circular convolution can be made equivalent to linear convolution.

The DFT can Implement Linear Convolution.

$$X_k = x_0 W^0 + x_1 W^k + x_2 W^{2k} + x_3 W^{3k}$$

$$Y_k = y_0 W^0 + y_1 W^k + y_2 W^{2k} + y_3 W^{3k}$$

$$X_k Y_k = x_0 y_0 + x_1 y_3 + x_2 y_2 + x_3 y_1$$

$$+ x_0 y_1 + x_1 y_0 + x_2 y_3 + x_3 y_2$$

Circular / Convolution

Circular Convolution

$$+ x_0 y_2 + x_1 y_1 + x_2 y_0 + x_3 y_3$$

$$y_{3} + x_{1}$$

$$x_{2}$$

$$y_{2}$$

$$y_{3} + y_{1}$$

$$+ x_0 y_3 + x_1 y_2 + x_2 y_1 + x_3 y_0$$

Linear Convolution

1 1							! 				
	0	0	0	\mathcal{X}_0	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	0	0	0	
$x_0 y_0$	y_3	y_2	y_1	${\cal Y}_0$	0	0	0				
$x_0y_1 + x_1y_0$	0	y_3	y_2	y_1	\mathcal{Y}_0	0	0	0			
$x_0y_2 + x_1y_1 + x_2y_4$	0	0	y_3	y_2	y_1	\mathcal{Y}_0	0	0			
		0	0	y_3	y_2	y_1	y_0	0			
•		0	0	0	y_3	y_2	y_1	y_0	0	0	
			0	0	0	y_3	y_2	y_1	${\cal Y}_0$	0	0
x_3y_3							y_3	${\cal Y}_2$	${\cal Y}_1$	${\cal Y}_0$	
ĺ]				

Figure 7.10: Circular Convolution of Two 8 Point Sequences.
Only y(0), y(2), y(4) and y(7) are shown. All Outer Circles Carry the Same Sequence as the Upper Left Circle.

Figure 7.11: Linear Convolution of Two Finite Length Sequences by DFT.

DFT of each Row - LM² Operations

Twiddle the Resulting Matrix - LM Operation

DFT of each Column - ML² Operation

Total
$$ML(M+L+1)$$
 $M=12, L=5$
 $M+L+1=18$

DFT of $(ML)^2=ML(ML)$

Complete Array

 $M=12, L=5$
 $M+L+1=18$
 $ML=60$

savings of ~ 3:1

BUT e.g.
$$M = 1000$$
, $L = 20$
 $M + L + 1 = 1021$
 $ML = 20,000$ savings of ~ 20:1