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Abstract

We present a system for identifying the semantic relationships, or semantic roles,
�lled by constituents of a sentence within a semantic frame. Given an input sentence,
the system labels constituents with either abstract semantic roles such as Agent or
Patient, or more domain-speci�c semantic roles such as Speaker, Message, and
Topic.

The system is based on statistical classi�ers which were trained on 653 semantic
role types from roughly 50,000 sentences. Each sentence had been hand-labeled with
semantic roles in the FrameNet semantic labeling project. We then parsed each
training sentence and extracted various lexical and syntactic features, including the
syntactic category of the constituent, its grammatical function, and position in the
sentence. These features were combined with knowledge of the target verb, noun, or
adjective, as well as information such as the prior probabilities of various combinations
of semantic roles. We also used various lexical clustering algorithms to generalize
across possible �llers of roles. Test sentences were parsed, were annotated with these
features, and were then passed through the classi�ers.

Our system achieves 82% accuracy in identifying the semantic role of pre-segmented
constituents. At the harder task of simultaneously segmenting constituents and iden-
tifying their semantic role, the system achieved 65% precision and 61% recall.

Our study also allowed us to compare the usefulness of di�erent features and
feature-combination methods in the semantic role labeling task.
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yUniversity of Colorado, Boulder
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1 Introduction

Recent years have been exhilarating ones for natural language understanding. The excitement and
rapid advances that had characterized other language processing tasks like speech recognition, part
of speech tagging, and parsing, have �nally begun to appear in tasks in which understanding and
semantics play a greater role. For example, there has been widespread commercial deployment of
simple speech-based natural language understanding systems which answer questions about ight
arrival times, give directions, report on bank balances or perform simple �nancial transactions. More
sophisticated research systems can generate concise summaries of news articles, answer fact-based
questions, and recognize complex semantic and dialog structure.

But the challenges that lie ahead are still similar to the challenge that the �eld has faced since
Winograd (1972): moving away from carefully hand-crafted, domain-dependent systems toward
robustness and domain-independence. This goal is not as far away as it once was, thanks to the
development of large semantic databases like WordNet (Fellbaum, 1998), and of general-purpose
domain-independent algorithms like named-entity recognition.

Current information extraction and dialogue understanding systems, however, are still based on
domain-speci�c frame-and-slot templates. Systems for booking airplane information are based on
domain-speci�c frames with slots like from airport, to airport, or depart time. Systems for
studying mergers and acquisitions are based on slots like joint venture company, products,
relationship, and amount. In order for natural language understanding tasks to proceed beyond
these speci�c domains, we need semantic frames and a semantic understanding system which don't
require a new set of slots for each new application domain.

In this paper we describe a shallow semantic interpreter based on semantic roles that are less
domain-speci�c than to airport or joint venture company. These roles are de�ned at the level
semantic frames (see (Fillmore, 1976) for a description of frame-based semantics), which describe
abstract actions or relationships along their participants.

For example, the Judgement frame contains roles like judge, evaluee, and reason, while
the Statement frame contains roles like speaker, addressee, and message, as the following
examples show:

(1) [Judge She ] blames [Evaluee the Government ] [Reason for failing to do enough to help ] .

(2) [Message \I'll knock on your door at quarter to six" ] [Speaker Susan] said.

These shallow semantic roles could play an important role in information extraction, for example
allowing a system to determine that in the sentence \The �rst one crashed" the syntactic subject
is the vehicle, but in the sentence \The �rst one crashed it" the syntactic subject is the agent.
But this shallow semantic level of interpretation can be used for many purposes besides generalizing
information extraction and semantic dialogue systems. One such application is in word-sense disam-
biguation, where the roles associated with a word can be cues to its sense. For example, Lapata and
Brew (1999) and others have shown that the di�erent syntactic subcategorization frames of a verb
like \serve" can be used to help disambiguate a particular instance of the word \serve". Adding
semantic role subcategorization information to this syntactic information could extend this idea to
use richer semantic knowledge. Semantic roles could also act as an important intermediate repre-
sentation in statistical machine translation or automatic text summarization and in the emerging
�eld of Text Data Mining (TDM) (Hearst, 1999). Finally, incorporating semantic roles into proba-
bilistic models of language may yield more accurate parsers and better language models for speech
recognition.

This paper describes an algorithm for identifying the semantic roles �lled by constituents in
a sentence. We apply statistical techniques that have been successful for the related problems
of syntactic parsing, part of speech tagging, and word sense disambiguation, including probabilistic
parsing and statistical classi�cation. Our statistical algorithms are trained on a hand-labeled dataset:
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the FrameNet database (Baker, Fillmore, and Lowe, 1998). The FrameNet database de�nes a tagset
of semantic roles called frame elements, and includes roughly 50,000 sentences from the British
National Corpus which have been hand-labeled with these frame elements.

We present our system in stages, beginning in the Section 2 with a description of the task and
the set of frame elements/semantic roles used, and continuing in Section 3 by relating the system
to previous research. We divide the problem of labeling roles into two parts: �nding the relevant
sentence constituents, and giving them the correct labels. In Section 4, we explore how to choose the
labels when the boundaries are known, and in Section 5 we return to the problem of identifying the
sentence parts to be labeled. Section 6 examines how the choice of the set of semantic roles a�ects
results. Section 7 compares various strategies for improving performance by generalizing across
lexical statistics for role �llers, and Section 8 examines representations of sentence-level argument
structure. Finally, we draw conclusions and discuss future directions.

2 Semantic Roles

Semantic roles are probably one of the oldest classes of constructs in linguistic theory, dating back
thousands of years to Panini's k�araka theory. Longevity, in this case, begets variety, and the literature
records scores of proposals for sets of semantic roles. These sets of roles range from the very speci�c
to the very general, and many have been used in computational implementations of one type or
another.

At the speci�c end of the spectrum are domain-speci�c roles such as the from airport, to airport,
or dep time discussed above, or verb-speci�c roles like eater and eaten for the verb eat. The
opposite end of the spectrum consists of theories with only two `proto-roles' or `macroroles': Proto-
Agent and Proto-Patient (Van Valin, 1993; Dowty, 1991). In between lie many theories with
around ten roles or so, such as Fillmore (1971)'s list of nine: Agent, Experiencer, Instrument,
Object, Source, Goal, Location, Time, and Path. 1

Many of these sets of roles have been proposed either by linguists as part of theories of linking, the
part of grammatical theory which describes the relationship between semantic roles and their syn-
tactic realization, or by computer scientists as part of implemented natural language understanding
systems. As a rule, the more abstract roles have been proposed by linguists, who are more concerned
with explaining generalizations across verbs in the syntactic realization of their arguments, while the
more speci�c roles are more often proposed by computer scientists, who are more concerned with
the details of the realization of the arguments of single verbs.

The FrameNet project proposes roles which are neither as general as the ten abstract thematic
roles, nor as speci�c as the thousands of potential verb-speci�c role. FrameNet roles are de�ned for
each semantic frame. A frame is a schematic representations of situations involving various partici-
pants, props, and other conceptual roles (Fillmore, 1976). For example, the frame Conversation,
shown in Figure 1, is invoked by the semantically related verbs \argue", \banter", \debate", \con-
verse", and \gossip" as well as the nouns \argument", \dispute", \discussion" and \ti�", and is
de�ned as follows:

(3) Two (or more) people talk to one another. No person is construed as only a speaker or only
an addressee. Rather, it is understood that both (or all) participants do some speaking and
some listening|the process is understood to be symmetrical or reciprocal.

The roles de�ned for this frame, and shared by all its lexical entries, include Protagonist1
and Protagonist2 or simply Protagonists for the participants in the conversation, as well as
Medium, and Topic. Similarly, the Judgment frame mentioned above has the roles Judge,
Evaluee, and Reason, and is invoked by verbs like \blame", \admire", and \praise", and nouns

1There are scores of other theories with slightly di�erent sets of roles, including, among many others, (Fillmore,
1968), (Jackendo�, 1972), (Schank, 1972); see (Somers, 1987) for an excellent summary.
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Figure 1: Sample domains and frames from the FrameNet lexicon.

like \fault" and \admiration". A number of annotated examples from the Judgment frame are
included below to give a avor of the FrameNet database:

(4) [Judge She ] blames [Evaluee the Government ] [Reason for failing to do enough to help ] .

(5) Holman would characterise this as blaming [Evaluee the poor ] .

(6) The letter quotes Black as saying that [Judge white and Navajo ranchers ] misrepresent their
livestock losses and blame [Reason everything ] [Evaluee on coyotes ] .

(7) The only dish she made that we could tolerate was [Evaluee syrup tart which ] [Judge we ]
praised extravagantly with the result that it became our unhealthy staple diet.

(8) I 'm bound to say that I meet a lot of [Judge people who ] praise [Evaluee me ] [Reason for
speaking up ] but don't speak up themselves.

(9) Specimens of her verse translations of Tasso Jerusalem Delivered and Verri Roman Nights
circulated to [ Manner warm ] [Judge critical ] praise but unforeseen circumstance prevented
their publication.

(10) And if Sam Snort hails Doyler as monumental is he perhaps erring on the side of being
excessive in [ Judge his ] praise.

De�ning semantic roles at this intermediate frame level may avoid some of the well-known di�-
culties of de�ning a unique small set of universal, abstract thematic roles, while also allowing some
generalization across the roles of di�erent verbs, nouns, and adjectives, each of which adds additional
semantics to the general frame, or highlights a particular aspect of the frame. One way of thinking
about very abstract thematic roles in a FrameNet systems is as frame elements which are de�ned
in very abstract frames such as \action" and \motion", at the top of an inheritance hierarchy of
semantic frames (Fillmore and Baker, 2000).

The examples above illustrate another di�erence between frame elements and thematic roles, at
least as commonly implemented. Where thematic roles tend to be arguments mainly of verbs, frame
elements can be arguments of any predicate, and the FrameNet database thus includes nouns and
adjectives as well as verbs.

The examples above also illustrate a few of the phenomena that make it hard to automatically
identify frame elements. Many of these are caused by the fact that there is not always a direct
correspondence between syntax and semantics. While the subject of blame is often the Judge, the
direct object of blame can be an Evaluee (e.g., `the poor' in \blaming the poor") or a Reason
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(e.g., `everything' in \blame everything on coyotes"). The Judge can also be realized as a genitive
pronoun, (e.g. `his' in \his praise") or even an adjective (e.g. `critical' in \critical praise").

The preliminary version of the FrameNet corpus used for our experiments contained 67 frame
types from 12 general semantic domains chosen for annotation. A complete list of the domains is
shown in Table 1, along with representative frames and predicates. Within these frames, examples of
a total of 1462 distinct lexical predicates, or target words, were annotated: 927 verbs, 339 nouns,
and 175 adjectives. There are a total of 49,013 annotated sentences, and 99,232 annotated frame
elements (which do not include the target words themselves).

Domain Sample Frames Sample Predicates

Body Action utter, wink
Cognition Awareness attention, obvious

Judgment blame, judge
Invention coin, contrive

Communication Conversation bicker, confer
Manner lisp, rant

Emotion Directed angry, pleased
Experiencer bewitch, rile

General Imitation bogus, forge
Health Response allergic, susceptible
Motion Arriving enter, visit

Filling annoint, pack
Perception Active glance, savour

Noise snort, whine
Society Leadership emperor, sultan
Space Adornment cloak, line
Time Duration chronic, short

Iteration daily, sporadic
Transaction Basic buy, spend

Wealthiness broke, well-o�

Table 1: Semantic domains with sample frames and predicates from the FrameNet lexicon

3 Related Work

Assignment of semantic roles is an important part of language understanding, and has been at-
tacked by many computational systems. Traditional parsing and understanding systems, including
implementations of uni�cation-based grammars such as HPSG (Pollard and Sag, 1994), rely on
hand-developed grammars which must anticipate each way in which semantic roles may be realized
syntactically. Writing such grammars is time-consuming, and typically such systems have limited
coverage.

Data-driven techniques have recently been applied to template-based semantic interpretation in
limited domains by \shallow" systems that avoid complex feature structures, and often perform
only shallow syntactic analysis. For example, in the context of the Air Traveler Information System
(ATIS) for spoken dialogue, Miller et al. (1996) computed the probability that a constituent such as
\Atlanta" �lled a semantic slot such as Destination in a semantic frame for air travel. In a data-
driven approach to information extraction, Rilo� (1993) builds a dictionary of patterns for �lling
slots in a speci�c domain such as terrorist attacks, and Rilo� and Schmelzenbach (1998) extend this
technique to automatically derive entire case frames for words in the domain. These last systems
make use of a limited amount of hand labor to accept or reject automatically generated hypotheses.
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They show promise for a more sophisticated approach to generalize beyond the relatively small
number of frames considered in the tasks. More recently, a domain independent system has been
trained by Blaheta and Charniak (2000) on the function tags such as Manner and Temporal

included in the Penn Treebank corpus. Some of these tags correspond to FrameNet semantic roles,
but the Treebank tags do not include all the arguments of most predicates. In this work, we aim
to develop a statistical system to automatically learn to identify all the semantic roles for a wide
variety of predicates in unrestricted text.

4 Probability Estimation for Roles

We divide the task of labeling frame elements into two subtasks: that of identifying the boundaries
of the frame elements in the sentences, and that of labeling each frame element, given its boundaries,
with the correct role. We �rst give results for a system which labels roles using human-annotated
boundaries, returning to the question of automatically identifying the boundaries in Section 5.

4.1 Features Used in Assigning Semantic Roles

The system is a statistical one, based on training a classi�er on a labeled training set, and testing
on a held-out portion of the data. The system is trained by �rst using an automatic syntactic parser
to analyze the 36,995 training sentences, matching annotated frame elements to parse constituents,
and extracting various features from the string of words and the parse tree. During testing, the
parser is run on the test sentences and the same features extracted. Probabilities for each possible
semantic role r are then computed from the features. The probability computation will be described
in the next section; here we discuss the features used.

The features used represent various aspect of the syntactic structure of the sentence as well as
lexical information. The relationship between such surface manifestations and semantic roles is the
subject of linking theory | see Levin and Hovav (1996) for a synthesis of work in this area. In
general, linking theory argues that the syntactic realization of arguments of a predicate is predictable
from semantics | exactly how this relationship works is the subject of much debate. Regardless of
the underlying mechanisms used to generate syntax from semantics, the relationship between the
two suggests that it may be possible to learn to recognize semantic relationships from syntactic cues,
given examples with both types of information.

4.1.1 Phrase Type

Di�erent roles tend to be realized by di�erent syntactic categories. For example, in communication
frames, the Speaker is likely to appear as a noun phrase, Topic as a prepositional phrase or noun
phrase, and Medium as a prepositional phrase, as in: \We talked about the proposal over the
phone."

The phrase type feature we used indicates the syntactic category of the phrase expressing the
semantic roles, using the set of syntactic categories of the Penn Treebank project, as described
in Marcus, Santorini, and Marcinkiewicz (1993). In our data, frame elements are most commonly
expressed as noun phrases (NP, 47% of frame elements in the training set), and prepositional phrases
(PP, 22%). The next most common categories are adverbial phrases (ADVP, 4%), particles (e.g.
\make something up" { PRT, 2%) and sentential clauses (SBAR, 2% and S 2%).

We used the parser of Collins (1997), a statistical parser trained on examples from the Penn
Treebank, to generate parses of the same format for the sentences in our data. Phrase types were
derived automatically from parse trees generated by the parser, as shown in Figure 2. Given the
automatically generated parse tree, the constituent spanning each set of words annotated as a frame
element was found, and the constituent's nonterminal label was taken as the phrase type.
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Figure 2: A sample sentence with parser output (above) and FrameNet annotation (below). Parse
constituents corresponding to frame elements are highlighted.

The matching was performed by calculating the starting and ending word positions for each
constituent in the parse tree, as well as for each annotated frame element, and matching each
frame element with the parse constituent with the same beginning and ending points. Punctuation
was ignored in this computation. Due to parsing errors, or, less frequently, mismatches between
the parse tree formalism and the FrameNet annotation standards, there was sometimes no parse
constituent matching an annotated frame element. 13% of the frame elements in the training set
had no matching parse constituent. These cases were discarded during training; during testing,
the largest constituent beginning at the frame element's left boundary and lying entirely within the
element was used to calculate the features. This handles common parse errors such as a prepositional
phrase being incorrectly attached to a noun phrase at the right hand edge, and it guarantees that
some syntactic category will be returned: the part of speech tag of the frame element's �rst word in
the limiting case.

4.1.2 Grammatical Function

The correlation between semantic roles and syntactic realization as subject or direct object is one of
the primary facts that linking theory attempts to explain. It was a motivation for the case hierarchy
of Fillmore (1968), which allowed such rules as \if there is an underlying Agent, it becomes the
syntactic subject". Similarly, in his theory of macroroles, Van Valin (1993) describes the Actor as
being preferred in English for the subject. Functional grammarians consider syntactic subjects to
have been historically grammaticalized agent markers. As an example of how this feature is useful,
in the sentence \He drove the car over the cli�", the subject NP is more likely to �ll the Agent
role than the other two NPs.

The grammatical function feature we used attempts to indicate a constituent's syntactic relation
to the rest of the sentence, for example as a subject or object of a verb. As with phrase type,
this feature was read from parse trees returned by the parser. After experimentation with various
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versions of this feature, we restricted it to apply only to NPs, as it was found to have little e�ect
on other phrase types. Only two values for this feature were used: subject and object. An NP node
whose parent is an S node was assigned the function subject, and an NP whose parent is a VP was
assigned the function object. In cases where the NP's immediate parent was neither an S or VP, the
nearest S or VP ancestor was found, and the value of the feature assigned accordingly.

4.1.3 Position

In order to overcome errors due to incorrect parses, as well as to see how much can be done without
parse trees, we introduced position as a feature. This feature simply indicates whether the con-
stituent to be labeled occurs before or after the predicate de�ning the semantic frame. We expected
this feature to be highly correlated with grammatical function, since subjects will generally appear
before a verb, and objects after.

Although we do not have hand-checked parses against which to measure the performance of the
automatic parser on our corpus, the result that 13% of frame elements have no matching parse
constituent gives a rough idea of the parser's accuracy. Almost all of these cases are due to parser
error. Other parser errors include cases where a constituent is found, but with the incorrect label
or internal structure. This measure also considers only the individual constituent representing the
frame element | the parse for the rest of the sentence may be incorrect, resulting in an incorrect
value for the grammatical relation feature. Collins (1997) reports 88% labeled precision and recall on
individual parse constituents on data from the Penn Treebank, roughly consistent with our �nding
of at least 13% error.

4.1.4 Voice

The distinction between active and passive verbs plays an important role in the connection between
semantic role and grammatical function, since direct objects of active verbs correspond to subjects
of passive verbs. From the parser output, verbs were classi�ed as active or passive by building a set
of 10 passive-identifying patterns. Each of the patterns requires both a passive auxiliary (some form
of \to be" or \to get") and a past participle.

4.1.5 Head Word

As previously noted, we expected lexical dependencies to be extremely important in labeling se-
mantic roles, as indicated by their importance in related tasks such as parsing. For example, in
a communication frame, noun phrases headed by \Bill", \brother", or \he" are more likely to be
the Speaker, while those headed by \proposal", \story", or \question" are more likely to be the
Topic. (We did not attempt to resolve pronoun references.) Since the parser we used assigns each
constituent a head word as an integral part of the parsing model, we were able to read the head
words of the constituents from the parser output, using the same set of rules for identifying the head
child of each constituent in the parse tree.

4.2 Probability Estimation

For our experiments, we divided the FrameNet corpus as follows: one-tenth of the annotated sen-
tences for each target word were reserved as a test set, and another one-tenth were set aside as
a tuning set for developing our system. A few target words with fewer than ten examples were
removed from the corpus. In our corpus, the average number of sentences per target word is only
34, and the number of sentences per frame is 732 | both relatively small amounts of data on which
to train frame element classi�ers.
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In order to automatically label the semantic role of a constituent, we wish to estimate a prob-
ability distribution telling us how likely the constituent is to �ll each possible role given the the
features described above and the predicate, or target word, t:

P (rjh; pt; gf; position; voice; t)
It would be possible to calculate this distribution directly from the training data by counting the

number of times each role is seen with a combination of features, and dividing by the total number
of times the combination of features is seen:

P (rjh; pt; gf; position; voice; t) =
#(r; h; pt; gf; position; voice; t)

#(h; pt; gf; position; voice; t)

However, in many cases, we will never have seen a particular combination of features in the
training data, and in others we will have seen the combination only a small number of times, providing
a poor estimate of the probability. The fact that there are only about 30 training sentences for each
target word, and that the head word feature in particular can take on a large number of values (any
word in the language), contribute to the sparsity of the data. Although we expect our features to
interact in various ways, we cannot train directly on the full feature set. For this reason, we built
our classi�er by combining probabilities from distributions conditioned on a variety of combinations
of features.

Distribution Coverage Accuracy Performance

P (rjt) 100% 40.9% 40.9%
P (rjpt; t) 92.5 60.1 55.6
P (rjpt; gf; t) 92.0 66.6 61.3
P (rjpt; position; voice) 98.8 57.1 56.4
P (rjpt; position; voice; t) 90.8 70.1 63.7
P (rjh) 80.3 73.6 59.1
P (rjh; t) 56.0 86.6 48.5
P (rjh; pt; t) 50.1 87.4 43.8

Table 2: Distributions Calculated for Semantic Role Identi�cation: r indicates semantic role, pt
phrase type, gf grammatical function, h head word, and t target word, or predicate.

Table 2 shows the probability distributions used in the �nal version of the system. Coverage

indicates the percentage of the test data for which the conditioning event had been seen in training
data. Accuracy is the proportion of covered test data for which the correct role is predicted, and
Performance, which is the product of coverage and accuracy, is the overall percentage of test data for
which the correct role is predicted. Accuracy is somewhat similar to the familiar metric of precision
in that it is calculated over cases for which a decision is made, and performance is similar to recall

in that it is calculated over all true frame elements. However, unlike a traditional precision/recall
trade-o�, these results have no threshold to adjust, and the task is a multi-way classi�cation rather
than a binary decision. The distributions calculated were simply the empirical distributions from
the training data. That is, occurrences of each role and each set of conditioning events were counted
in a table, and probabilities calculated by dividing the counts for each role by the total number of
observations for each conditioning event. For example, the distribution P (rjpt; t) was calculated as
follows:

P (rjpt; t) =
#(r; pt; t)

#(pt; t)

Some sample probabilities calculated from the training are shown in Table 3.
As can be seen from Table 2, there is a trade-o� between more speci�c distributions, which have

high accuracy but low coverage, and less speci�c distributions, which have low accuracy but high
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P (rjpt; gf; t) Count in training data

P (r =Agtjpt =NP; gf =Subj; t =abduct) = :46 6
P (r =Thmjpt =NP; gf =Subj; t =abduct) = :54 7
P (r =Thmjpt =NP; gf =Obj; t =abduct) = 1 9
P (r =Agtjpt =PP; t =abduct) = :33 1
P (r =Thmjpt =PP; t =abduct) = :33 1
P (r =CoThmjpt =PP; t =abduct) = :33 1
P (r =Manrjpt =ADVP; t =abduct) = 1 1

Table 3: Sample probabilities for P (rjpt; gf; t) calculated from training data for the verb abduct. The
variable gf is only de�ned for noun phrases. The roles de�ned for the removing frame in the motion

domain are: Agent, Theme, CoTheme (\... had been abducted with him") and Manner.

coverage. The lexical head word statistics, in particular, are valuable when data are available, but
are particularly sparse due to the large number of possible head words. In order to combine the
strengths of the various distributions, we combined them in various ways to obtain an estimate of
the full distribution P (rjh; pt; gf; position; voice; t).

The �rst combination method is linear interpolation, which simply averages the probabilities
given by each of the distributions:

P (rjconstituent) = �1P (rjt) + �2P (rjpt; t) +

�3P (rjpt; gf; t) + �4P (rjpt; position; voice) +

�5P (rjpt; position; voice; t) + �6P (rjh) +

�7P (rjh; t) + �8P (rjh; pt; t)

where
P

i �i = 1. The geometric mean, when expressed in the log domain, is similar:

P (rjconstituent) = 1
Z
expf �1logP (rjt) + �2logP (rjpt; t) +

�3logP (rjpt; gf; t) + �4logP (rjpt; position; voice) +

�5logP (rjpt; position; voice; t) + �6logP (rjh) +

�7logP (rjh; t) + �8logP (rjh; pt; t) g

where Z is a normalizing constant ensuring that
P

r P (rjconstituent) = 1.
The results shown in Table 4 reect equal values of � for each distribution de�ned for the relevant

conditioning event (but excluding distributions for which the conditioning event was not seen in the
training data). A few other schemes for choosing the interpolation weights were tried, for example
giving more weight to distributions for which more training data was available, as they might be
expected to be more accurately estimated. However, this was found to have relatively little e�ect.
We attribute this to the fact that the evaluation depends only on the ranking of the probabilities
rather than their exact values.

In the \backo�" combination method, a lattice was constructed over the distributions in Table
2 from more speci�c conditioning events to less speci�c, as shown in Figure 3. The lattice is used
to select a subset of the available distributions to combine. The less speci�c distributions were used
only when no data was present for any more speci�c distribution. Thus, the distributions selected
are arranged in a cut across the lattice representing the most speci�c distributions for which data is
available. The selected probabilities were combined with both linear interpolation and a geometric
mean.

Although this lattice is reminiscent of techniques of backing o� to less speci�c distributions
commonly used in n-gram language modeling, it di�ers in that we only use the lattice to select
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P(r | h, t) P(r | pt, t) P(r | pt, position, voice)

P(r | pt, position, voice, t)P(r | pt, gf, t)

P(r | t)P(r | h)

P(r | h, pt, t)

Figure 3: Lattice organization of the distributions from Table 2, with more speci�c distributions
towards the top.

distributions for which the conditioning event has been seen in the training data. Discounting and
deleted interpolation methods in language modeling typically are used to assign small, non-zero
probability to a predicted variable unseen in the training data even when a speci�c conditioning
even has been seen. In our case, we are perfectly willing to assign zero probability to a speci�c
role (the predicted variable), because we are only interested in �nding the role with the highest
probability.

Combining Method Correct

Linear Interpolation 79.5%
Geometric Mean 79.6
Backo�, linear interpolation 80.4
Backo�, geometric mean 79.6
Baseline: Most common role 40.9

Table 4: Results on Development Set, 8167 observations

Linear

Backo� Baseline

Development Set 80.4% 40.9%
Test Set 76.9 40.6%

Table 5: Results on Test Set, using backo� linear interpolation system. The test set consists of 7900
observations.

The �nal system performed at 80.4% accuracy, which can be compared to the 40.9% achieved by
always choosing the most probable role for each target word, essentially chance performance on this
task. Results for this system on test data, held out during development of the system, are shown in
Table 5.

4.3 Multiple Estimates of Grammatical Function

It is interesting to note that looking at a constituent's position relative to the target word along with
active/passive information performed as well as reading grammatical function o� the parse tree. A
system using grammatical function, along with the head word, phrase type, and target word, but
no passive information, scored 79.2%, compared with 80.4% for the full system. A similar system
using position rather than grammatical function scored 78.8% | nearly identical performance.
However, using head word, phrase type, and target word without either position or grammatical
function yielded only 76.3%, indicating that while the two features accomplish a similar goal, it is
important to include some measure of the constituent's syntactic relationship to the target word.
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Our �nal system incorporated both features, giving a further, though not signi�cant, improvement.
As a guideline for interpreting these results, with 8167 observations, the threshold for statistical
signi�cance with p < :05 is a 1.0% absolute di�erence in performance.

Use of the active/passive feature made a further improvement: our system using position but no
grammatical function or passive information scored 78.8%. Using position and passive information,
but no grammatical function, brought performance to 80.5%. (We consider this identical to the
80.4% achieved with all features, shown in Tables 4 and 5, and prefer to leave features in the system
in the case of equal performance.) Roughly 5% of the examples were identi�ed as passive uses.

5 Identi�cation of Frame Element Boundaries

The experiments described above have used human annotated frame element boundaries | here we
address how well the frame elements can be found automatically. Experiments were conducted using
features similar to those described above to identify constituents in a sentence's parse tree that were
likely to be frame elements. However, the system is still given the human-annotated target word
and the frame to which it belongs as inputs. We defer for now the task of identifying which frames
come into play in a sentence, but envision that existing word sense disambiguation techniques could
be applied to the task.

Our approach to �nding frame elements is similar to the approach described in the previous
section for labeling them: features are extracted from the sentence and its parse, and used to
calculated probability tables, with the predicted variable, fe, being a binary indicator of whether a
given constituent in the parse tree is or is not a frame element.

We introduce one new feature for this purpose: the path from the target word through the
parse tree to the constituent in question, represented as a string of parse tree nonterminals linked
by symbols indicating upward or downward movement through the tree, as shown in Figure 4. 2

S

NP VP

NP

He ate some pancakes

PRP

DT NN

VB

Figure 4: In this example, the path from the frame element \He" to the target word \ate" can
be represented as VB " VP " S # NP, with " indicating upward movement in the parse tree and #
downward movement.

The other features used were the identity of the target word and the identity of the constituent's
head word. The probability distributions calculated from the training data were P (fejpath), P (fejpath; t),
and P (fejh; t), where fe indicates an event where the parse constituent in question is a frame el-
ement, path the path through the parse tree from the target word to the parse constituent, t the
identity of the target word, and h the head word of the parse constituent. Some sample values from
these distributions are shown in Table 6. For example, the path VB " VP# NP, which corresponds

2This feature can be thought of as a variant of the grammatical function feature described in Section 4.1. Although
experiments showed the distinction between the features to be of little importance for role labeling, the grounding
of the path feature in the target word is crucial for frame element identi�cation. The previous feature identi�es all
subjects, regardless of which verb's subject they are.
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to the direct object of a verbal target word, had a high probability of being a frame element. The
table also illustrates cases of sparse data for various feature combinations.

By varying the probability threshold at which a decision is made, one can plot a precision/recall
curve as shown in Figure 5. P (fejpath; t) performs relatively poorly due to fragmentation of the
training data (recall only about 30 sentences are available for each target word). While the lexical
statistic P (fejh; t) alone is not useful as a classi�er, using it in linear interpolation with the path
statistics improves results. The \interpolation" curve in Figure 5 reects a linear interpolation of
the form:

P (fejp; h; t) = �1P (fejp) + �2P (fejp; t) + �3P (fejh; t) (11)

Note that this method can only identify frame elements that have a corresponding constituent in
the automatically generated parse tree. For this reason, it is interesting to calculate how many true
frame elements overlap with the results of the system, relaxing the criterion that the boundaries
must match exactly. Results for partial matching are shown in Table 7. Three types of overlap
are possible: the identi�ed constituent entirely within true frame element, the true frame element
entirely within identi�ed constituent, and neither sequence entirely within the other. An example
of the �rst case is shown in Figure 6, where the true Message frame element is \Mandarin by a
head", but due to an error in the parser output, no constituent exactly matches the frame elements
boundaries. In this case, the system identi�es two frame elements, indicated by shading, which
together span the true frame element.

Distribution Sample Prob. Count in training data

P (fejpath) P (fejpath =VBD"VP#ADJP#ADVP) = 1 1
P (fejpath =VBD " VP# NP) = :73 3963
P (fejpath =VBN " VP# NP# PP# S) = 0 22

P (fejpath; t) P (fejpath =JJ"ADJP#PP; t =apparent) = 1 10
P (fejpath =NN"NP"PP"VP#PP; t =departure) = :4 5

P (fejh; t) P (fejh =sudden; t =apparent) = 0 2
P (fejh =to; t =apparent) = :11 93
P (fejh =that; t =apparent) = :21 81

Table 6: Sample probabilities for a constituent being a frame element.
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Figure 5: Precision/Recall plot for various methods of identifying frame elements. Recall is calcu-
lated over only frame elements with matching parse constituents.
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Type of Overlap Identi�ed Constituents Number

Exactly matching boundaries 66% 5421
Identi�ed constituent entirely within true frame element 8 663
True frame element entirely within identi�ed constituent 7 599
Neither entirely within the other 0 26
No overlap with any true frame element 13 972

Table 7: Results on Identifying Frame Elements (FEs), including partial matches. Results obtained
using P (fejpath) with threshold at .5. A total of 7681 constituents were identi�ed as FEs, 8167
FEs were present in hand annotations, of which matching parse constituents were present for 7053
(86%).

As the horses were led back... ,

SBAR

the

DT

result

NN

NP

was

VBD

announced :

VBN

Mandarin

NN

NP

by

IN

a

DT

head

NN

NP

PP

VP

VP

S

target Message

Figure 6: An example of overlap between identi�ed frame elements and the true boundaries: the
shaded areas represent frame elements identi�ed by the classi�er, with the human annotation below
the sentence.

When the automatically identi�ed constituents were fed through the role labeling system de-
scribed above, 79.6% of the constituents which had been correctly identi�ed in the �rst stage were
assigned the correct role in the second, roughly equivalent to the performance when assigning roles to
constituents identi�ed by hand. A more sophisticated integrated system for identifying and labeling
frame elements is described in Section 8.1.

6 Thematic Roles

In order to investigate the degree to which our system is dependent on the set of semantic roles
used, we performed experiments using abstract, general semantic roles such as Agent, Patient,
and Goal. Such roles were proposed in theories of linking such as Fillmore (1968) and Jackendo�
(1972) to explain the syntactic realization of semantic arguments. This level of roles, often called
thematic roles, was seen as useful for expressing generalizations such as \If a sentence has an
Agent, the Agent will occupy the subject position." Such correlations might enable a statistical
system to generalize from one semantic domain to another.

Recent work on linguistic theories of linking has attempted to explain syntactic realization in
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terms of the fundamentals of verbs' meaning | see Levin and Hovav (1996) for a survey of a number
of theories. While such an explanation is desirable, our goal is much more modest: an automatic
procedure for identifying semantic roles in text, and we aim to use abstract roles as a means of
generalizing from limited training data in various semantic domains. We see this e�ort as consistent
with various theoretical accounts of the underlying mechanisms of argument linking, since the various
theories all admit some sort of generalization between the roles of speci�c predicates.

To this end, we developed a correspondence from frame-speci�c roles to a set of abstract thematic
roles. Since there is no canonical set of abstract semantic roles, we decided upon the list shown in
Table 8. We are interested in adjuncts as well as arguments, leading to roles such as Degree
not found in many theories of verb-argument linking. The di�culty of �tting many relations into
standard categories such as Agent and Patient led us to include other roles such as Topic. In
all, we used 18 roles, a somewhat richer set than often used, but still much more restricted than
the frame-speci�c roles. Even with this enriched set, not all frame-speci�c roles �t neatly into one
category.

Role Example

Agent Henry pushed the door open and went in.

Cause Jeez, that amazes me as well as riles me.

Degree I rather deplore the recent manifestation of Pop; it doesn't seem to me
to have the intellectual force of the art of the Sixties.

Experiencer It may even have been that John anticipating his imminent doom rati-
�ed some such arrangement perhaps in the ceremony at the Jordan.

Force If this is the case can it be substantiated by evidence from the history

of developed societies?

Goal Distant across the river the towers of the castle rose against the sky
straddling the only land approach into Shrewsbury.

Instrument In the children with colonic contractions fasting motility did not dif-
ferentiate children with and without constipation.

Location These eshy appendages are used to detect and taste food amongst the

weed and debris on the bottom of a river.

Manner His brow arched delicately.

Null Yet while she had no intention of surrendering her home, it would be
foolish to let the atmosphere between them become too acrimonious.

Patient As soon as a character lays a hand on this item, the skeletal Cleric grips
it more tightly.

Path The dung-collector ambled slowly over, one eye on Sir John.

Percept What is apparent is that this manual is aimed at the non-specialist

technician, possibly an embalmer who has good knowledge of

some medical procedures.

Proposition It says that rotation of partners does not demonstrate independence.

Result All the arrangements for stay-behind agents in north-west Europe col-
lapsed, but Dansey was able to charm most of the governments in exile
in London into recruiting spies.

Source He heard the sound of liquid slurping in a metal container as Farrell
approached him from behind.

State Rex spied out Sam Maggott hollering at all and sundry and making

good use of his over-sized red gingham handkerchief.

Topic He said, \We would urge people to be aware and be alertwith �reworks

because your fun might be someone else's tragedy."

Table 8: Abstract Semantic Roles, with representative examples from the FrameNet corpus

An experiment was performed replacing each role tag in the training and test data with the
corresponding thematic role, and training the system as described above on the new dataset. Results
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were roughly comparable for the two types of semantic roles: overall performance was 82.1% for
thematic roles, compared to 80.4% for frame-speci�c roles. This reects the fact that most frames
had a one-to-one mapping from frame-speci�c to abstract roles, so the tasks were largely equivalent.
We expect abstract roles to be most useful when generalizing to predicates and frames not found in
the training data, a future goal of our research.

One interesting consequence of using abstract roles is that they allow us to more easily compare
the system's performance on di�erent roles because of the smaller number of categories. This
breakdown is shown in Table 9. Results are given for two systems: the �rst assumes that the frame
element boundaries are known and and the second �nds them automatically. The second system,
which is described in Section 8.1, corresponds to the righthand two columns in Table 9. The labeled
recall shows how often the frame element is correctly identi�ed, while the unlabeled recall column
show how often a constituent with the given role is correctly identi�ed as being a frame element,
even if it is incorrectly labeled as a di�erent frame element.

Experiencer and Agent are the roles that are correctly identi�ed most often | two similar
roles generally found as the subject for complementary sets of verbs. The unlabeled recall column
shows that these roles are easy to �nd in the sentence, as a predicate's subject is almost always a
frame element, and the known boundaries column shows that they are also not often confused with
other roles when it is known that they are frame elements. The two most di�cult roles in terms of
unlabeled recall, Manner and Degree, are typically realized by adverbs or prepositional phrases
and considered adjuncts. It is interesting to note that these are considered in FrameNet to be general
frame elements that can be used in any frame.

known boundaries unknown boundaries
Role Number % correct labeled recall unlabeled recall
Agent 2401 92.8 76.7 80.67
Experiencer 333 91.0 78.7 83.48
Source 503 87.3 67.4 74.16
Proposition 186 86.6 56.5 64.52
State 71 85.9 53.5 61.97
Patient 1161 83.3 63.1 69.08
Topic 244 82.4 64.3 72.13
Goal 694 82.1 60.2 69.60
Cause 424 76.2 61.6 73.82
Path 637 75.0 63.1 63.42
Manner 494 70.4 48.6 59.72
Percept 103 68.0 51.5 65.05
Degree 61 67.2 50.8 60.66
Null 55 65.5 70.9 85.45
Result 40 65.0 55.0 70.00
Location 275 63.3 47.6 63.64
Force 49 59.2 40.8 63.27
Instrument 30 43.3 30.0 73.33
(other) 406 57.9 40.9 63.05
Total 8167 82.1 63.6 72.10

Table 9: Performance broken down by abstract role. The third column represents accuracy where
frame element boundary are given to the system, while the fourth and �fth columns reect �nding
the boundaries automatically. Unlabeled recall includes cases that were identi�ed as a frame element
but given the wrong role.
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7 Generalizing Lexical Statistics

As can be seen from Table 2, information about the head word of a constituent is valuable in
predicting the constituent's role. Of all the distributions presented, P (rjh; pt; t) predicts the correct
role most often (87.4% of the time) when training data for a particular head word has been seen.
However, due to the large vocabulary of possible head words, it also has the smallest coverage,
meaning it is likely that for a given case in the test data, no frame element with the same head word
will have been seen in the set of training sentences for the target word in question. To capitalize on
the information provided by the head word, we wish to �nd a way to generalize from head words
seen in the training data to other head words. In this section we compare three di�erent approaches
to the task of generalizing over head words: automatic clustering of a large vocabulary of head
words to identify words with similar semantics, use of a hand-built ontological resource, WordNet,
to organize head words in a semantic hierarchy, and bootstrapping to make use of unlabeled data
in training the system. We will focus on frame elements �lled by noun phrases, which comprise
roughly half the total.

7.1 Automatic Clustering

In order to �nd groups of nouns with similar semantic properties, an automatic clustering was
performed using the general technique of Lin (1998). This technique is based on the expectation
that words with similar semantics will tend to co-occur with the same other sets of words. For
example, nouns describing foods will tend to occur as direct objects of verbs such \eat" as well as
\devour", \savor", etc. The algorithm below attempts to �nd such patterns of co-occurrence from
the counts of grammatical relations between speci�c words in the corpus, without the use of any
external knowledge or semantic representation.

We extracted verb-direct object relations from an automatically parsed version of the British
National Corpus, using the parser of Carroll and Rooth (1998). 3 Clustering was performed using
the probabilistic co-occurrence model of Hofmann and Puzicha (1998). 4 According to this model,
the two observed variables, in this case the verb and the head noun of its object, can be considered
independent given the value of a hidden cluster variable, c:

P (n; v) =
X
c

P (c)P (njc)P (vjc)

One begins by setting a priori the number of values that c can take, and using the EM algorithm
to estimate the distributions P (c), P (njc) and P (vjc). Deterministic annealing was used in order to
prevent over�tting of the training data.

We are interested only in the clusters of nouns given by the distribution P (njc) | the verbs
and the distribution P (vjc) are thrown away once training is complete. Other grammatical relations
besides direct object could be used, as could a set of relations. We used the direct object (following
other clustering work such as Pereira, Tishby, and Lee (1993)) because it is particularly likely to
exhibit semantically signi�cant selectional restrictions.

A total of 2,610,946 verb-object pairs were used as training data for the clustering, with a further
290,105 pairs used as a cross-validation set to control the parameters of the clustering algorithm.
Direct objects were identi�ed as noun phrases directly under a verb phrase node | not a perfect
technique, since it also �nds nominal adjuncts such as \I start today". Forms of the verb \to be"
were excluded from the data, as its co-occurrence patterns are not semantically informative. The
number of values possible for the latent cluster variable was set to 256. (Comparable results were

3We are indebted to Mats Rooth for providing us with the parsed corpus.
4For other NLP applications of the probabilistic clustering algorithm, see e.g. (Rooth et al., 1999). For application

to language modeling, see (Gildea and Hofmann, 1999).

16



found with 64 clusters; the use of deterministic annealing prevents a large numbers of clusters from
resulting in over�tting.)

The soft clustering of nouns thus generated is used as follows: for each example in the frame-
element-annotated training data, probabilities for values of the hidden cluster variable were calcu-
lated using Bayes' rule:

P (cjh) =
P (hjc)P (c)P
i P (hjci)P (ci)

The clustering was applied only to noun phrase constituents; the distribution P (njc) from the
clustering is used as a distribution P (hjc) over noun head words.

Using the cluster probabilities, a new estimate of P (rjc; nt; t) is calculated for cases where nt,
the nonterminal or syntactic category of the constituent, is NP:

P (rjc; nt; t) =

P
j:ntj=nt;tj=t;rj=r

P (cj jhj)P
j:ntj=nt;tj=t

P (cj jhj)

During testing, a smoothed estimate of P (rjh; nt; t) is calculated as
P

c P (rjc; nt; t)P (cjh), again

using P (cjh) = P (hjc)P (c)P
i
P (hjci)P (ci)

.

As with the other methods of generalization described in this section, automatic clustering was
applied only to noun phrases, which represent 50% of the constituents in the test data. We would not
expect head word to be as valuable for other syntactic types. The second most common category
is prepositional phrases. The head of a prepositional phrase is considered to be the preposition
according to the Collins/Magerman rules we use, and because the set of prepositions is small,
coverage is not as great of a problem. Furthermore, the preposition is often a direct indicator of
the semantic role. (A more complete model might distinguish between cases where the preposition
serves as a case or role marker, and others where it is semantically informative, with clustering
being performed on the preposition's object in the former case. We did not attempt to make this
distinction.)

Distribution Coverage Accuracy Performance

P (rjh; pt; t) 41.6 87.0 36.1P
c P (rjc; pt; t)P (cjh) 97.9 79.7 78.0

Interpolation of unclustered distributions 100.0 83.4 83.4
Unclustered distributions + clustering 100.0 85.0 85.0

Table 10: Clustering results on NP constuents only: 4086 instances.

Table 10 shows results for the use of automatic clustering on constituents identi�ed by the parser
as noun phrases. As can be seen, the vocabulary used for clustering includes almost all (97.9%)
of the test data, and the decrease in accuracy from direct lexical statistics to clustered statistics
is relatively small (from 87.0% to 79.7%). When combined with the full system described above,
clustered statistics increase performance on NP constituents from 83.4% to 85.0% (statistically
signi�cant at p = :05). Over the entire test set, this translates into an improvement from 80.4% to
81.2%.

7.2 Using a Semantic Hierarchy: Wordnet

The automatic clustering described above can be seen as an imperfect method of deriving semantic
classes from the vocabulary, and we might expect a hand-developed set of classes to do better. We
tested this hypothesis using Wordnet (Fellbaum, 1998), a freely available semantic hierarchy. The
basic technique, when presented with a head word for which no training examples had been seen,
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Distribution Coverage Accuracy Performance

P (rjh; pt; t) 41.6 87.0 36.1
Wordnet : P (rjs; pt; t) 80.8 79.5 64.1
Interpolation of unclustered distributions 100.0 83.4 83.4
Unclustered distributions + Wordnet 100.0 84.3 84.3

Table 11: Wordnet results on NP constituents only: 4086 instances.

was to ascend type hierarchy until reaching a level for which training data are available. To do this,
counts of training data were percolated up the semantic hierarchy in a technique similar to that of,
for example, McCarthy (2000). For each training example, the count #(r; s; pt; t) was incremented in
a table indexed by the semantic role r, Wordnet sense s, phrase type pt, and target word t, for each
Wordnet sense s above the head word h in the hypernym hierarchy. In fact, the Wordnet hierarchy is
not a tree, but rather includes multiple inheritance. For example, \person" has as hypernyms both
\life form" and \causal agent". In such cases, we simply took the �rst hypernym listed, e�ectively
converting the structure into a tree. A further complication is that several Wordnet senses are
possible for a given head word. We simply used the �rst sense listed for each word { a word sense
disambiguation module capable of distinguishing Wordnet senses might improve our results.

As with the clustering experiments reported above, the Wordnet hierarchy was used only for
noun phrases. The Wordnet hierarchy does not include pronouns | in order to increase coverage,
the words \I", \me", \you", \he", \she", \him", \her", \we", and \us" were added as hyponyms
of \person". Pronouns which refer to inanimate, or both animate and inanimate, objects, were not
included. In addition, the CELEX English lexical database (Celex, 1993) was used to convert plural
nouns to their singular forms.

As can been seen from the results in Table 11, accuracy for the Wordnet technique is roughly
the same as the automatic clustering results in Table 10 | 84.3% on NPs, as opposed to 85.0%
with automatic clustering. This indicates that the error introduced by the unsupervised clustering
is roughly equivalent to the error caused by our arbitrary choice of the �rst Wordnet sense for
each word and the �rst hypernym for each Wordnet sense. However, coverage for the Wordnet
technique is lower, largely due to the absence of proper nouns from Wordnet, as well as the absence
of non-animate pronouns (in which we include both personal pronouns such as \it" and \they" and
inde�nite pronouns such as \something" and \anyone"). A proper nouns dictionary would be likely
to help improve coverage, and a module for anaphora resolution might help cases with pronouns,
with or without the use of Wordnet. The conversion of plural forms to singular base forms was an
important part of the success of the Wordnet system, increasing coverage from 71.0% to 80.8%. Of
the remaining 19.2% of all noun phrases not covered by the combination of lexical and Wordnet
sense statistics, 22% consisted of head words de�ned in Wordnet, but for which no training data
were available for any hypernym, and 78% consisted of head words not de�ned in Wordnet.

7.3 Bootstrapping from Unannotated Data

A third way of attempting to improve coverage of the lexical statistics is to \bootstrap", or label
unannotated data with the automatic system, and use the (imperfect) result as further training
data. This can be considered a variant of the EM algorithm, although we use the single most likely
hypothesis for the unannotated data, rather than calculating the expectation over all hypotheses.
Only one iteration of training on the unannotated data was performed.

The unannotated data used consisted of 156,590 sentences containing the target words under
investigation, increasing the total amount of data available to roughly six times the 36,995 annotated
training sentences.

Table 12 shows results on noun phrases for the bootstrapping method. The accuracy of a system
trained only on data from the automatic labeling (Pauto) is 81.0%, reasonably close to the 87.0% for
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Distribution Coverage Accuracy Performance

Ptrain(rjh; pt; t) 41.6 87.0 36.1
Pauto(rjh; pt; t) 48.2 81.0 39.0
Ptrain+auto(rjh; pt; t) 54.7 81.4 44.5
Ptrain, backo� to Pauto 54.7 81.7 44.7
Interpolation of unclustered distributions 100 83.4 83.4
Unclustered distributions + Pauto 100 83.2 83.2

Table 12: Bootstrapping results on NP constituents only: 4086 instances.

the system trained only on annotated data (Ptrain). Combining the annotated and automatically
labeled data increases coverage from 41.6% to 54.7%, and performance to 44.5%. Because the
automatically labeled data are not as accurate as the annotated data, we can do slightly better by
using the automatic data only in cases where no training data is available, \backing o�" to the
distribution Pauto from Ptrain. The last row of Table 12 shows results with Pauto incorporated into
the backo� lattice of all the features of Figure 3, which actually resulted in a slight decrease in
performance from the system without the bootstrapped data, shown in the second to last row. This
is presumably because, although the system trained on automatically labeled data performed with
reasonable accuracy, many of the cases it classi�es correctly overlap with the training data. In fact
our backing-o� estimate of P (rjh; pt; t) only classi�es correctly 66% of the additional cases that it
covers over Ptrain(rjh; pt; t).

7.4 Discussion

The three methods of generalizing lexical statistics each had roughly equivalent accuracy on cases
for which they were able to come up with an estimate of the role probabilities for unseen head words.
The di�erences between the three were primarily due to how much they could improve the coverage
of the estimator, that is, how many new noun heads they were able to handle. The automatic
clustering method performed by far the best on this metric; only 2.1% of test cases were unseen
in the data used for calculating the clustering. This indicates how much can be achieved with
unsupervised methods given very large training corpora. The bootstrapping technique described
here, while having a similar unsupervised avor, made use of much less data than the corpus used
for noun clustering. Unlike the probabilistic clustering, the bootstrapping technique can only make
use of sentences containing the target words in question. The Wordnet experiment, on the other
hand, indicates both the usefulness of hand-built resources when they apply and the di�culty of
attaining broad coverage with such resources. We plan to combine the three systems described to
test whether the gains are complementary or overlapping.

8 Verb Argument Structure

One of the primary di�culties in labeling semantic role is that one predicate may be used with
di�erent argument structures: for example in the sentences \He opened the door" and \The door
opened", the verb \open" assigns di�erent semantic roles to its syntactic subject. In this section
we compare two strategies for handling this type of alternation: a sentence-level feature for frame
element groups, and a subcategorization feature for the syntactic uses of verbs.

8.1 Priors on Frame Element Groups

The system described above for classifying frame elements makes an important simplifying assump-
tion: it classi�es each frame element independently of the decisionsmade for the other frame elements
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Frame Element Group Example Sentences
f Evaluee g Holman would characterise this

as blaming [Evaluee the poor ] .
f Judge, Evaluee, Reason g The letter quotes Black as

saying that [Judge white and Navajo ranchers ]
misrepresent their livestock losses and
blame [Reason everything ] [Evaluee on coyotes ] .

[Judge She ] blames [Evaluee the Government ]
[Reason for failing to do enough to help ] .

f Judge, Evaluee g The only dish she made that we could tolerate was
[Evaluee syrup tart which ] [Judge we ]
praised extravagantly with the result that it became
our unhealthy staple diet.

Table 13: Sample frame element groups for the verb \blame".

Frame Element Group Prob.

f Eval, Judge, Reas g 0.549
f Eval, Judge g 0.160
f Eval, Reas g 0.167
f Eval g 0.097
f Eval, Judge, Role g 0.014
f Judge g 0.007
f Judge, Reas g 0.007

Table 14: Frame element groups for the verb \blame" in the Judgment frame.

in the sentence. In this section we relax this assumption, and present a system which can make use
of the information that, for example, a given target word requires that one role always be present,
or that having two instances of the same role is extremely unlikely.

In order to capture this information, we introduce the notion of a frame element group, which
is the set of frame element roles present in a particular sentence (technically a multiset, as duplicates
are possible, though quite rare). Frame element groups, or FEGs, are unordered | examples are
shown in Table 13. 5

Our system for choosing the most likely overall assignment of roles for all the frame elements
of a sentences uses an approximation which we derived beginning with the true probability of the
optimal role assignment r�:

r� = argmaxr1::nP (r1::njt; f1::n)

where P (r1::njt; f1::n) represents the probability of an overall assignment of roles ri to each of the
n constituents of a sentence, given the target word t and the various features fi of each of the
constituents. In the �rst step we apply Bayes' rule to this quantity, and in the second we make
the assumption that the features of the various constituents of a sentence are independent given the
target word and each constituent's role:

r� = argmaxr1::nP (r1::njt)
P (f1::njr1::n; t)

P (f1::njt)

5The FrameNet corpus recognized three types of \null instantiated" frame elements (Fillmore, 1986), which are
implied but do not appear in the sentence. An example of null instantiation is the sentence \Have you eaten?", where
\food" is understood. We did not attempt to identify such null elements, and any null instantiated roles are not
included in the sentence's frame element group. This increases the variability of observed FEGs, as a predicate may
require a certain role but allow it to be null instantiated.
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We estimate the prior over frame element assignments as the probability of the frame element groups,
represented with the set operator fg:

r� = argmaxr1::nP (fr1::ngjt)
Y
i

P (fijri; t)

We then apply Bayes' rule again:

r� = argmaxr1::nP (fr1::ngjt)
Y
i

P (rijfi; t)P (fijt)

P (rijt)

and �nally discard the feature prior P (fijt) as being constant over the argmax expression:

r� = argmaxr1::nP (fr1::ngjt)
Y
i

P (rijfi; t)

P (rijt)

This leaves us with an expression in terms of the prior for frame element groups of a particular target
word P (fr1::ngjt), the local probability of a frame element given a constituent's features P (rijfi; t)
on which our previous system was based, and the individual priors for the frame elements chosen
P (rijt). This formulation can be used either to assign roles where the frame element boundaries are
known, or where they are not, as we will discuss later in this section.

Calculating empirical FEG priors from the training data is relatively straightforward, but the
sparseness of the data presents a problem. In fact, 15% of the test sentences had an FEG not seen in
the training data for the target word in question. Using the empirical value for the FEG prior, these
sentences could never be correctly classi�ed. For this reason, we introduce a smoothed estimate of
the FEG prior, consisting of a linear interpolation of the empirical FEG prior and the product, for
each each possible frame element, of the probability of being present or not present in a sentence
given the target word:

�P (fr1::ngjt) + (1� �)

2
4 Y
r2r1::n

P (r 2 FEGjt)
Y

r 62r1::n

P (r 62 FEGjt)

3
5

The value of � was empirically set to maximize performance on the development set; a value of
0.6 yielded performance of 81.6%, a signi�cant improvement over the 80.4% of the baseline system.
Results were relatively insensitive to the exact value of �.

Up to this point, we have considered separately the problems of labeling roles given that we
know where the boundaries of the frame elements lie (Section 4, as well as Section 7) and �nding
the constituents to label in the sentence (Section 5). We know turn to combining the two systems
described above into a complete role labeling system. We use equation 11 to estimate the probability
that a constituent is a frame element, repeated below:

P (fejp; h; t) = �1P (fejp) + �2P (fejp; t)) + �3P (fejh; t)

where p is the path through the parse tree from the target word to the constituent, t is the target
word, and h is the constituent's head word.

The �rst two rows of Table 15 show the results obtained by deciding which constituents are
frame elements by setting the threshold on the probability P (fejp; h; t) to 0.5, and then running the
labeling system of Section 4 on the resulting set of constituent. The �rst two columns of results show
precision and recall for the task of identifying frame element boundaries correctly. The second pair of
columns gives precision and recall for the combined task of boundary identi�cation and role labeling
| to be counted as correct, the frame element must have the correct boundary and subsequently
be labeled with the correct role.
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Method FE Prec. FE Recall Labeled Prec. Labeled Recall
Boundary id. + baseline role labeler 72.6 63.1 67.0 46.8
Boundary id. + labeler w/ FEG priors 72.6 63.1 65.9 46.2
Integrated boundary id. and labeling 74.0 70.1 64.6 61.2

Table 15: Combined results on boundary identi�cation and role labeling.

Contrary to our results using human annotated boundaries, incorporating FEG priors into the
system had a negative e�ect. No doubt this is due to introducing a dependency on other frame
element decisions which may be incorrect | the use of FEG priors causes errors in boundary
identi�cation to be compounded.

One way around this problem is to integrate boundary identi�cation with role labeling, allowing
the FEG priors and the role labeling decisions to have an e�ect on decisions as to which constituents
are frame elements. This was accomplished by extending the formulation

argmaxr1::nP (fr1::ngjt)
Y
i

P (rijfi; t)

P (rijt)

to include FE identi�cation decisions:

argmaxr1::nP (fr1::ngjt)
Y
i

P (rijfi; fei; t)P (feijfi)

P (rijt)

where fei is a binary variable indicating that a constituent is a frame element and P (feijfi) is
calculated as above. When fei is true, role probabilities are calculated as before; when fei is false,
ri assumes an empty role with probability one, and is not included in the Frame Element Group
represented by fr1::ng.

One caveat using this integrated approach is its exponential complexity: each combination of
role assignments to constituents is considered, and the number of combinations is exponential in
the number of constituents. While this did not pose a problem when only the annotated frame
elements were under consideration, now we must include every parse constituent with a non-zero
probability for P (feijfi). In order to make the computation tractable, we implement a pruning
scheme: hypotheses are extended by choosing assignments for one constituent at a time, and only
the top m hypotheses are retained for extension by assignments to the next constituent. Here we
set m = 10 after experimentation showed that increasing m yielded no signi�cant improvement.

Results for the integrated approach are shown in the last row of Table 15. Allowing role as-
signments to inuence boundary identi�cation improves results on both the unlabeled boundary
identi�cation task, and the combined identi�cation and labeling task. The integrated approach puts
us in a di�erent portion of the precision/recall curve from the results in the �rst two rows, as it
returns a higher number of frame elements (7736 vs. 5719). A more direct comparison can be made
by lowering the probability threshold for frame element identi�cation from .5 to .35, in order to force
the non-integrated system to return the same number of frame elements as the integrated system.
This yields a frame element identi�cation precision of 71.3% and recall of 67.6%, and labeled preci-
sion of 60.8% and recall of 57.6%, which is dominated by the result for the integrated system. The
integrated system does not have a probability threshold to set; nonetheless it comes closer to iden-
tifying the correct number of frame elements (8167) than does the independent boundary identi�er
when the theoretically optimal threshold of .5 is used with the latter.

8.2 Subcategorization

Recall that use of the FEG prior was motivated by the ability of verbs to assign di�ering roles to
the same syntactic position. For example, the verb \open" assigns di�erent roles to the syntactic
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subject in \He opened the door" and \The door opened". In this section we consider a di�erent
feature motivated by these problems: the syntactic subcategoriation of the verb. For example, the
verb \open" seems to be more likely to assign the role Patient to its subject in an intransitive
context, and Agent to its subject in a transitive context. Our use of a subcategorization feature
was intended to di�erentiate between transitive and intransitive uses of a verb.

The feature used was the identity of the phrase structure rule expanding the target word's parent
node in the parse tree, as shown in Figure 7. For example, for \He closed the door", with \close"
as the target word, the subcategorization feature would be \VP ! V NP". The subcategorization
feature was used only when the target word was a verb, and the various part of speech tags for verb
forms were collapsed. It is important to note that we are not able to distinguish complements from
adjuncts, and our subcategorization feature could be sabotaged by cases such as \The door closed
yesterday", as in the Penn Treebank style, \yesterday" is considered an NP with tree structure
equivalent to that of a direct object. Our subcategorization feature is fairly speci�c, as for example
the addition of an ADVP to a verb phrase will result in a di�erent value. We tested variations of
the feature that counted the number of NPs in a VP or the total number of children of the VP, with
no signi�cant change in results.

The

DT

door

NN

NP

opened

V

VP

S

He

PRP

NP

opened

V

the

DT

door

NN

NP

VP

S

Figure 7: Two subcategorizations for the target word \open". The relevant production in the parse
tree is highlighted. On the left, the value of the feature is \VP ! V NP"; on the right it is \VP !
V".

The subcategorization feature was used in conjunction with the path feature, which represents
the sequence of non-terminals along the path through the parse tree from the target word to the
constituent representing a frame element. Making use of the new subcategorization feature by adding
the distribution P (rjsubcat; path; t) to the lattice of distributions in the baseline system resulted in a
slight improvement to 80.8% performance from 80.4%. As with the gf feature in the baseline system,
it was found bene�cial to use the subcat feature only for NP constituents.

8.3 Discussion

Combining the Frame Element Group priors and subcategorization feature into a single system
resulted in performance of 81.6%, no improvement over using FEG priors without subcategorization.
We suspect that the two seemingly di�erent approaches in fact provide similar information. For
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example, in our hypothetical example of the sentences \He closed the door" vs. \The door closed",
the verb \close" would have high priors for the FEGs f Agent, Theme g and f Theme g, but
a low prior for f Agent g. In sentences with only one candidate frame element (the subject in
\The door closed"), the use of the FEG prior will cause it to be labeled Theme even when the
feature probabilities prefer labeling a subject as Agent. Thus the FEG prior, by representing the
set of arguments the predicate is likely to take, essentially already performs the functions of the
subcategorization feature.

The FEG prior allows us to introduce a dependency between the classi�cations of the sentence's
various constituents with a single parameter. Thus, it can handle the alternation of our example
without, for example, introducing the role chosen for one constituent as an additional feature in
the probability distribution for the next constituent's role. It appears that because introducing
additional features can further fragment our already sparse data, it is preferable to have a single
parameter for the FEG prior.

An interesting result reinforcing this conclusion is that some of the argument structure-related
features which aided the system when individual frame elements were considered independently are
unnecessary when using FEG priors. Removing the features passive and position from the system
and using a smaller lattice of only the distributions not using these features yields performance of
82.8% on the role labeling task using hand-annotated boundaries. We believe that because these
features pertain to syntactic alternations in how arguments are realized, they overlap with the
function of the FEG prior. Adding unnecessary features to the system can reduce performance by
fragmenting the training data.

9 Conclusion

Our preliminary system is able to automatically label semantic roles with fairly high accuracy,
indicating promise for applications in various natural language tasks. Lexical statistics computed
on constituent head words were found to be the most important of the features used. While lexical
statistics are quite accurate on the data covered by observations in the training set, the sparsity of
the data when conditioned on lexical items meant that combining features was the key to high overall
performance. While the combined system was far more accurate than any feature taken alone, the
speci�c method of combination used was less important. Various methods of extending the coverage
of lexical statistics indicated that the broader coverage of an automatic clustering outweighed its
imprecision. Including priors over sets of frame elements in a sentence was found to be an e�ective
way of modeling dependencies between individual classi�cation decision without adding too much
complexity to the system.

We plan to continue this work by integrating semantic role identi�cation with parsing, by boot-
strapping the system on larger, and more representative, amounts of data, and by attempting to
generalize from the set of predicates chosen by FrameNet for annotation to general text. One strategy
for this last goal would the combination of FrameNet data with named entity systems for recogniz-
ing times, dates, and locations | allowing the e�ort which has gone into recognizing these items,
typically adjuncts, with the FrameNet data, which is more focused on arguments. Another avenue
for expanding the system is some type of clustering of the target predicates and frames, which are
currently considered independently.
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